25. Class Number Calculation and Elliptic Unit. II Quartic Case

By Ken Nakamula
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1981)

Let K be a real quartic number field which is not totally real and contains a (real) quadratic subfield K_{2}. Let $D(<0), h$ and E_{+}respectively be the discriminant, the class number and the group of positive units of K. In the following, an effective algorithm will be given to calculate h and E_{+}at a time.

Our method is the same as in our preceding note [3] except for a slight change. We shall show a method to compute the relative class number with respect to K / K_{2}, assuming that the class number of K_{2} is known.
§ 1. Illustration of algorithm. Let d_{2}, h^{\prime} and $\eta_{2}(>1)$ respectively be the discriminant, the class number and the fundamental unit of K_{2}. We can compute h^{\prime} and η_{2} in a usual manner if d_{2} is given. So we assume that h^{\prime} and η_{2} are explicitly given. The group E_{+}of positive units of K is a free abelian group of rank 2. Let H_{+}be the group of positive units of K / K_{2}, and $\varepsilon_{1}(>1)$ be the generator of H_{+}, i.e.

$$
H_{+}:=\left\{\varepsilon \in E_{+} \mid N_{K / K_{2}}(\varepsilon)=1\right\}=\left\langle\varepsilon_{1}\right\rangle .
$$

Then, as in [2], the relative unit ε_{1} generates E_{+}together with another unit $\varepsilon_{2}(>1)$, i.e. $E_{+}=\left\langle\varepsilon_{1}, \varepsilon_{2}\right\rangle$, where

$$
\begin{equation*}
\varepsilon_{2}=\sqrt{\varepsilon_{1} \eta_{2}}, \quad \sqrt{\eta_{2}} \text { or } \eta_{2} . \tag{1}
\end{equation*}
$$

Let η_{e} be the so-called "elliptic unit" of K, of which the definition will be given in § 5. Then, applying the results of Schertz [4], we see that $\eta_{e}>1$ and $\eta_{e} \in H_{+}$, and obtain the following relation between η_{e} and the class number h of K :
(2)

$$
h / h^{\prime}=\left(E_{+}:\left\langle\varepsilon_{1}, \eta_{2}\right\rangle\right)\left(H_{+}:\left\langle\eta_{e}\right\rangle\right) / 2 .
$$

Therefore, the calculation of the relative class number h / h^{\prime} is reduced to the determination of the group index $\left(H_{+}:\left\langle\eta_{e}\right\rangle\right)$ and the unit ε_{2}. Our method consists of the following steps:
(i) to compute an approximate value of η_{e} (§5),
(ii) to compute the minimal polynomial of η_{e} over \boldsymbol{Q} (Lemma 2),
(iii) for $\xi \in H_{+}(\xi>1)$, to give an explicit upper bound $B(\xi)$ of ($H_{+}:\langle\xi\rangle$) (Proposition 1),
(iv) for $\xi \in H_{+}(\xi \neq 1)$, and for a natural number μ, to judge whether a real number $\sqrt[\mu]{\xi}$ belongs to K or not, and to compute the
minimal polynomial of $\sqrt[\mu]{\xi}$ over \boldsymbol{Q} if it belongs to K (Proposition 2),
(v) to determine ε_{2} and to compute the minimal polynomial of $\varepsilon_{2} \operatorname{over} \boldsymbol{Q}$ (§4).
Now, the computation of ($H_{+}:\left\langle\eta_{e}\right\rangle$) and ε_{1} goes similarly as described in $\S 1$ of [3] by using (i) to (iv), and then h / h^{\prime} and ε_{2} are decided by (v) on account of (2).
§ 2. Upper bound of $\boldsymbol{h} / \boldsymbol{h}^{\prime}$. The following lemma essentially gives an upper bound of the index of a subgroup of H_{+}.

Lemma 1. Let $\varepsilon \in H_{+}(\varepsilon>1)$. Then the absolute value of the discriminant $D(\varepsilon)$ of ε is smaller than $4\left(\left(\varepsilon^{2}+7\right)^{3}-8^{3}\right)$, i.e.

$$
|D(\varepsilon)|<4\left(\left(\varepsilon^{2}+7\right)^{3}-8^{3}\right)
$$

Note that $D(\varepsilon)$ is a non-zero multiple of the discriminant D of K, since ε does not belong to K_{2}. Then we have

Proposition 1. Let $\xi \in H_{+}(\xi>1)$, then

$$
\left(H_{+}:\langle\xi\rangle\right)<2 \log (\xi) / \log \left(\sqrt[3]{|D| / 4+8^{3}}-7\right)
$$

On account of (1) and (2), we have
Corollary. Let η_{e} be the elliptic unit of K. Then

$$
h / h^{\prime}<2 \log \left(\eta_{e}\right) / \log \left(\sqrt[3]{|D| / 4+8^{3}}-7\right)
$$

§3. μ-th root of relative unit. For any element ξ of K, which does not belong to K_{2}, let

$$
X^{4}-s(\xi) X^{3}+t(\xi) X^{2}-u(\xi) X+v(\xi)
$$

be the minimal polynomial of ξ over \boldsymbol{Q}.
If $\xi \in H_{+}(\xi \neq 1)$, then $u(\xi)=s(\xi)$ and $v(\xi)=1$. The following lemma enables us to compute the minimal polynomial of ξ from an approximate value of ξ.

Lemma 2. Let $\xi \in H_{+}(\xi \neq 1)$. Then $s(\xi)$ is a rational integer such that $|s(\xi)-\alpha|<2$ and that $2+\alpha(s(\xi)-\alpha)$ is a rational integer, and $t(\xi)$ is given by $t(\xi)=2+\alpha(s(\xi)-\alpha)$, where $\alpha=\xi+\xi^{-1}$.

For any rational integers s and t, define $r_{\mu}=r_{\mu}(s, t)(\mu=1,2,3$, ...) as follows:

$$
\begin{aligned}
& r_{1}=s, r_{2}=s r_{1}-2 t, r_{3}=s r_{2}-t r_{1}+3 s, r_{4}=s r_{3}-t r_{2}+s r_{1}-4, \\
& r_{\mu}=s r_{\mu-1}-t r_{\mu-2}+s r_{\mu-3}-r_{\mu-4} \quad \text { if } \mu \geqq 5 .
\end{aligned}
$$

Then we have
Proposition 2. Let $\xi \in H_{+}(\xi \neq 1)$, and μ be a natural number. Put $\varepsilon=\sqrt[\mu]{\xi}(>0)$ and $\alpha=\varepsilon+\varepsilon^{-1}$. The real number ε belongs to K if and only if there exists a rational integer s such that

$$
|s-\alpha|<2, \quad r_{\mu}(s, t)=s(\xi) \quad \text { and } \quad r_{\mu}\left(t-2, s^{2}-2 t+2\right)=t(\xi)-2,
$$

where t is the nearest rational integer to $2+\alpha(\alpha-s)$. If ε belongs to K, then

$$
s(\varepsilon)=s \quad \text { and } \quad t(\varepsilon)=t
$$

This proposition gives us an effective method of judge whether the μ-th root of $\xi \in H_{+}(\xi \neq 1)$ is an element of H_{+}or not. It only uses
$s(\xi), t(\xi)$ and an approximate value of ξ.
§4. Determination of ε_{2}. Let the polynomial

$$
X^{2}-l X+c ; \quad l \in Z, \quad c= \pm 1
$$

be the minimal polynomial of the fundamental unit $\eta_{2}(>1)$ of K_{2} over \boldsymbol{Q}.

We observe that $v\left(\varepsilon_{1} \eta_{2}\right)=1$. The following lemma enables us to calculate $s\left(\varepsilon_{1} \eta_{2}\right), t\left(\varepsilon_{1} \eta_{2}\right)$ and $u\left(\varepsilon_{1} \eta_{2}\right)$ from ε_{1} and η_{2}.

Lemma 2'. Put $\alpha=\varepsilon_{1}+\varepsilon_{1}^{-1}$. Then $s\left(\varepsilon_{1} \eta_{2}\right)$ is a rational integer such that $\left|s\left(\varepsilon_{1} \eta_{2}\right)-\alpha \eta_{2}\right|<2 \eta_{2}^{-1}(<2)$ and that $l^{2}-2 c+\alpha \eta_{2}\left(s\left(\varepsilon_{1} \eta_{2}\right)-\alpha \eta_{2}\right)$ and $\alpha \eta_{2}^{-1}+\eta_{2}^{2}\left(s\left(\varepsilon_{1} \eta_{2}\right)-\alpha \eta_{2}\right)$ are rational integers, and $t\left(\varepsilon_{1} \eta_{2}\right)$ and $u\left(\varepsilon_{1} \eta_{2}\right)$ are given by $t\left(\varepsilon_{1} \eta_{2}\right)=l^{2}-2 c+\alpha \eta_{2}\left(s\left(\varepsilon_{1} \eta_{2}\right)-\alpha \eta_{2}\right)$ and $u\left(\varepsilon_{1} \eta_{2}\right)=\alpha \eta_{2}^{-1}+\eta_{2}^{2}\left(s\left(\varepsilon_{1} \eta_{2}\right)-\alpha \eta_{2}\right)$.

We can judge whether $\varepsilon_{2}=\sqrt{\varepsilon_{1} \eta_{2}}$ or not by the following proposition, using $s\left(\varepsilon_{1} \eta_{2}\right), t\left(\varepsilon_{1} \eta_{2}\right), u\left(\varepsilon_{1} \eta_{2}\right)$ and an approximate value of ε_{1}.

Proposition 3. Put $\alpha=\sqrt{\varepsilon_{1}}+c \sqrt{1 / \varepsilon_{1}}$. The real number $\sqrt{\varepsilon_{1} \eta_{2}}$ belongs to K if and only if there exists a rational integer such that

$$
\begin{aligned}
& \left|s-\alpha \sqrt{\eta_{2}}\right|<2 \sqrt{1 / \eta_{2}}(<2), \\
& s\left(\varepsilon_{1} \eta_{2}\right)=s^{2}-2 t, \quad t\left(\varepsilon_{1} \eta_{2}\right)=t^{2}-2 s u+2 c \quad \text { and } \quad u\left(\varepsilon_{1} \eta_{2}\right)=u^{2}-2 c t,
\end{aligned}
$$ where t and u are the nearest rational integers respectively to

$$
c l+\alpha \sqrt{\eta_{2}}\left(s-\alpha \sqrt{\eta_{2}}\right) \quad \text { and } \quad \alpha \sqrt{1 / \eta_{2}}+c \eta_{2}\left(s-\alpha \sqrt{\eta_{2}}\right) .
$$

If $\varepsilon_{2}=\sqrt{\varepsilon_{1} \eta_{2}} \in K$, then

$$
s\left(\varepsilon_{2}\right)=s, \quad t\left(\varepsilon_{2}\right)=t, u\left(\varepsilon_{2}\right)=u \quad \text { and } \quad v\left(\varepsilon_{2}\right)=c .
$$

It is easy to see
Lemma 3. If $\varepsilon_{2}=\sqrt{\eta_{2}} \in K$, then $c=-1$.
We can judge whether $\varepsilon_{2}=\sqrt{\eta_{2}}$ or not by the following proposition, using ε_{1} and η_{2}.

Proposition 4. Assume $c=-1$, and let $\delta=\eta_{2}\left(\varepsilon_{1}-\varepsilon_{1}^{-1}\right)^{2}$. Put

$$
b=\left(2 s\left(\varepsilon_{1}\right)\right)^{2}-\left(t\left(\varepsilon_{1}\right)+2\right)^{2} \quad \text { and } \quad a=\delta+b / \delta .
$$

Then a and b are natural numbers. The real number $\sqrt{\eta_{2}}$ belongs to K if and only if there exist rational integers a^{\prime} and b^{\prime} such that

$$
b^{\prime 2}=b \quad \text { and } \quad a^{\prime 2}-2 b^{\prime}=a .
$$

If $\varepsilon_{2}=\sqrt{\eta_{2}} \in K$, then

$$
s\left(\varepsilon_{2}\right)=u\left(\varepsilon_{2}\right)=0, \quad t\left(\varepsilon_{2}\right)=-l \quad \text { and } \quad v\left(\varepsilon_{2}\right)=-1 .
$$

On account of (1), Propositions 3 and 4 give an effective method to determine ε_{2}. It only uses ε_{1} and η_{2}.
§5. Elliptic unit. In order to define the elliptic unit η_{e} of K, let us prepare some notations. Denote by d_{2} the discriminant of K_{2}. Let the imaginary quadratic number field $\Sigma:=\boldsymbol{Q}\left(\sqrt{D d_{2}}\right)$ and the discriminant of Σ be $-d$. Then the galois closure of K / Q is the composite field $L:=K \Sigma$, which is dihedral of degree 8 over \boldsymbol{Q} and cyclic quartic over Σ. The abelian extension L / Σ has a rational conductor (f) with a natural number f, and $D=-f^{2} d d_{2}$. Moreover, L is contained in the ring class field Σ_{f} modulo f over Σ. All these facts are known by

Halter-Koch [1]. Let $\Re(f)$ be the ring class group of Σ modulo f, and λ be the canonical isomorphism

$$
\lambda: \Re(f) \xlongequal{\rightrightarrows} \operatorname{Gal}\left(\Sigma_{f} / \Sigma\right)
$$

as in $\S 4$ of [3]. Let $\mathfrak{U}:=\lambda^{-1}\left(\operatorname{Gal}\left(\Sigma_{f} / L\right)\right)$, take and fix a class \mathfrak{h} of $\mathfrak{R}(f)$ such that $\mathfrak{j l l}$ generates the cyclic quotient group $\mathfrak{R}(f) / \mathfrak{H}$. For $\mathfrak{f} \in \mathfrak{R}(f)$, denote by γ_{t} a complex number with positive imaginary part such that the module $Z_{\gamma_{t}}+Z$ belongs to the class \mathfrak{f}. Then the elliptic unit η_{e} of K is defined, independent of the choice of \mathfrak{h} and γ_{t}, by the following:

$$
\begin{equation*}
\eta_{e}:=\prod_{t \in \mathfrak{u}} \sqrt{\operatorname{Im}\left(\gamma_{t \mathfrak{t}}\right) / \operatorname{Im}\left(\gamma_{t}\right)}\left|\eta\left(\gamma_{t \mathfrak{t}}\right) / \eta\left(\gamma_{t}\right)\right|^{2} . \tag{4}
\end{equation*}
$$

Here $\eta(z)$ is the Dedekind eta-function, of which an estimate as in Lemma 3 of [3] holds. Thus, when $\mathfrak{R}(f)$ and \mathfrak{H} are explicitly given, an approximate value of η_{e} can be computed.

If the discriminant D of K is given, there are finite possible pairs $\left\{d, d_{2}\right\}$, and it is easy to compute f. Therefore, we can count out explicitly every subgroup \mathfrak{H} of $\mathfrak{R}(f)$ which may correspond to K similarly as in the cubic case, using the results in [1]. Thus the class numbers and the fundamental units of all quartic fields K with the same discriminant D can be computed as described above.
§6. Appendix. (i) The following propositions help to determine ε_{2}.

Proposition 5. If $\sqrt{\eta_{e}}$ does not belong to K, then $\varepsilon_{2} \neq \eta_{2}$.
Proposition 6. If $\sqrt{\eta_{e}}$ belongs to K, then

$$
d=d_{2} \equiv 8(\bmod 16), f=4 ;
$$

or

$$
d=4 d_{2} \equiv 4(\bmod 16), f=1,2,4 \text { or } 8 .
$$

The former follows from (2) and the fact that h^{\prime} divides h, and the latter is proved by the results in [1].
(ii) The galois closure L of K / Q contains a totally complex quartic subfield F not conjugate to K. Further algorithm to compute the class number and the group of units of F exists. It uses the results in [2].

References

[1] F. Halter-Koch: Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe. J. Number Theory, 3, 412-443 (1971).
[2] K. Nakamula: On the group of units of a non-galois quartic or sextic number field. Proc. Japan Acad., 56A, 77-81 (1980).
[3] -: Class number calculation and elliptic unit. I. ibid., 57A, 56-59 (1981).
[4] R. Schertz: Die Klassenzahl der Teilkörper abelscher Erweitlungen imaginärquadratischer Zahlkörper. I. J. reine angew. Math., 295, 151-168 (1977) ; ditto. II. ibid., 296, 58-79 (1977).

