25. Class Number Calculation and Elliptic Unit. II Quartic Case

By Ken NAKAMULA

Department of Mathematics, Tokyo Metropolitan University (Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1981)

Let K be a real quartic number field which is not totally real and contains a (real) quadratic subfield K_2 . Let D(<0), h and E_+ respectively be the discriminant, the class number and the group of positive units of K. In the following, an effective algorithm will be given to calculate h and E_+ at a time.

Our method is the same as in our preceding note [3] except for a slight change. We shall show a method to compute the relative class number with respect to K/K_2 , assuming that the class number of K_2 is known.

§ 1. Illustration of algorithm. Let d_2 , h' and η_2 (>1) respectively be the discriminant, the class number and the fundamental unit of K_2 . We can compute h' and η_2 in a usual manner if d_2 is given. So we assume that h' and η_2 are explicitly given. The group E_+ of positive units of K is a free abelian group of rank 2. Let H_+ be the group of positive units of K/K_2 , and $\varepsilon_1(>1)$ be the generator of H_+ , i.e.

$$H_+:=\{\varepsilon\in E_+|N_{K/K_2}(\varepsilon)=1\}=\langle\varepsilon_1\rangle.$$

Then, as in [2], the relative unit ε_1 generates E_+ together with another unit $\varepsilon_2(>1)$, i.e. $E_+ = \langle \varepsilon_1, \varepsilon_2 \rangle$, where

(1) $\varepsilon_2 = \sqrt{\varepsilon_1 \eta_2}, \quad \sqrt{\eta_2} \quad \text{or} \quad \eta_2.$

Let η_e be the so-called "elliptic unit" of K, of which the definition will be given in § 5. Then, applying the results of Schertz [4], we see that $\eta_e > 1$ and $\eta_e \in H_+$, and obtain the following relation between η_e and the class number h of K:

(2)
$$h/h' = (E_+ : \langle \varepsilon_1, \eta_2 \rangle)(H_+ : \langle \eta_e \rangle)/2.$$

Therefore, the calculation of the relative class number h/h' is reduced to the determination of the group index $(H_+: \langle \eta_e \rangle)$ and the unit ε_2 . Our method consists of the following steps:

(i) to compute an approximate value of η_e (§ 5),

(ii) to compute the minimal polynomial of η_e over Q (Lemma 2),

(iii) for $\xi \in H_+$ ($\xi > 1$), to give an explicit upper bound $B(\xi)$ of $(H_+: \langle \xi \rangle)$ (Proposition 1),

(iv) for $\xi \in H_+$ ($\xi \neq 1$), and for a natural number μ , to judge whether a real number $\sqrt[n]{\xi}$ belongs to K or not, and to compute the

minimal polynomial of $\sqrt[\mu]{\xi}$ over Q if it belongs to K (Proposition 2),

(v) to determine ε_2 and to compute the minimal polynomial of ε_2 over Q (§ 4).

Now, the computation of $(H_*: \langle \eta_e \rangle)$ and ε_1 goes similarly as described in § 1 of [3] by using (i) to (iv), and then h/h' and ε_2 are decided by (v) on account of (2).

§2. Upper bound of h/h'. The following lemma essentially gives an upper bound of the index of a subgroup of H_+ .

Lemma 1. Let $\varepsilon \in H_+(\varepsilon > 1)$. Then the absolute value of the discriminant $D(\varepsilon)$ of ε is smaller than $4((\varepsilon^2 + 7)^3 - 8^3)$, i.e.

$$|D(\varepsilon)| < 4((\varepsilon^2+7)^3-8^3).$$

Note that $D(\varepsilon)$ is a non-zero multiple of the discriminant D of K, since ε does not belong to K_2 . Then we have

Proposition 1. Let $\xi \in H_+$ ($\xi > 1$), then

 $(H_+:\langle\xi\rangle) < 2\log(\xi)/\log(\sqrt[8]{|D|/4+8^3}-7).$

On account of (1) and (2), we have

Corollary. Let η_e be the elliptic unit of K. Then

 $h/h' < 2\log(\eta_e)/\log(\sqrt[3]{|D|/4+8^3}-7).$

§ 3. μ -th root of relative unit. For any element ξ of K, which does not belong to K_2 , let

 $X^4 - s(\xi)X^3 + t(\xi)X^2 - u(\xi)X + v(\xi)$

be the minimal polynomial of ξ over Q.

If $\xi \in H_+$ ($\xi \neq 1$), then $u(\xi) = s(\xi)$ and $v(\xi) = 1$. The following lemma enables us to compute the minimal polynomial of ξ from an approximate value of ξ .

Lemma 2. Let $\xi \in H_+(\xi \neq 1)$. Then $s(\xi)$ is a rational integer such that $|s(\xi)-\alpha| < 2$ and that $2+\alpha(s(\xi)-\alpha)$ is a rational integer, and $t(\xi)$ is given by $t(\xi)=2+\alpha(s(\xi)-\alpha)$, where $\alpha=\xi+\xi^{-1}$.

For any rational integers s and t, define $r_{\mu} = r_{\mu}(s, t) (\mu = 1, 2, 3, \dots)$ as follows:

$$\begin{array}{l} r_1 = s, \ r_2 = sr_1 - 2t, \ r_3 = sr_2 - tr_1 + 3s, \ r_4 = sr_3 - tr_2 + sr_1 - 4, \\ r_\mu = sr_{\mu-1} - tr_{\mu-2} + sr_{\mu-3} - r_{\mu-4} \quad \text{ if } \mu \geq 5. \end{array}$$

Then we have

Proposition 2. Let $\xi \in H_+$ ($\xi \neq 1$), and μ be a natural number. Put $\varepsilon = \sqrt[n]{\xi}$ (>0) and $\alpha = \varepsilon + \varepsilon^{-1}$. The real number ε belongs to K if and only if there exists a rational integer s such that

 $|s-\alpha| < 2$, $r_{\mu}(s, t) = s(\xi)$ and $r_{\mu}(t-2, s^2-2t+2) = t(\xi)-2$, where t is the nearest rational integer to $2+\alpha(\alpha-s)$. If ε belongs to K, then

$$s(\varepsilon) = s$$
 and $t(\varepsilon) = t$.

This proposition gives us an effective method of judge whether the μ -th root of $\xi \in H_+$ ($\xi \neq 1$) is an element of H_+ or not. It only uses $s(\xi)$, $t(\xi)$ and an approximate value of ξ .

§4. Determination of ε_2 . Let the polynomial

$$X^2 - lX + c; \quad l \in \mathbb{Z}, \quad c = \pm 1$$

be the minimal polynomial of the fundamental unit $\eta_2(>1)$ of K_2 over Q.

We observe that $v(\epsilon_1\eta_2)=1$. The following lemma enables us to calculate $s(\epsilon_1\eta_2)$, $t(\epsilon_1\eta_2)$ and $u(\epsilon_1\eta_2)$ from ϵ_1 and η_2 .

Lemma 2'. Put $\alpha = \epsilon_1 + \epsilon_1^{-1}$. Then $s(\epsilon_1\eta_2)$ is a rational integer such that $|s(\epsilon_1\eta_2) - \alpha\eta_2| < 2\eta_2^{-1}(<2)$ and that $l^2 - 2c + \alpha\eta_2(s(\epsilon_1\eta_2) - \alpha\eta_2)$ and $\alpha\eta_2^{-1} + \eta_2^2(s(\epsilon_1\eta_2) - \alpha\eta_2)$ are rational integers, and $t(\epsilon_1\eta_2)$ and $u(\epsilon_1\eta_2)$ are given by $t(\epsilon_1\eta_2) = l^2 - 2c + \alpha\eta_2(s(\epsilon_1\eta_2) - \alpha\eta_2)$ and $u(\epsilon_1\eta_2) = \alpha\eta_2^{-1} + \eta_2^2(s(\epsilon_1\eta_2) - \alpha\eta_2)$.

We can judge whether $\varepsilon_2 = \sqrt{\varepsilon_1 \eta_2}$ or not by the following proposition, using $s(\varepsilon_1 \eta_2)$, $t(\varepsilon_1 \eta_2)$, $u(\varepsilon_1 \eta_2)$ and an approximate value of ε_1 .

Proposition 3. Put $\alpha = \sqrt{\varepsilon_1} + c\sqrt{1/\varepsilon_1}$. The real number $\sqrt{\varepsilon_1\eta_2}$ belongs to K if and only if there exists a rational integer s such that

 $|s-lpha\sqrt{\eta_2}| < 2\sqrt{1/\eta_2}(<2)$,

 $s(\varepsilon_1\eta_2) = s^2 - 2t$, $t(\varepsilon_1\eta_2) = t^2 - 2su + 2c$ and $u(\varepsilon_1\eta_2) = u^2 - 2ct$, where t and u are the nearest rational integers respectively to

$$cl+lpha\sqrt{\eta_2}(s-lpha\sqrt{\eta_2}) \quad and \quad lpha\sqrt{1/\eta_2}+c\eta_2(s-lpha\sqrt{\eta_2}).$$

If $\varepsilon_2 = \sqrt{\varepsilon_1 \eta_2} \in K$, then

$$s(\varepsilon_2)=s, t(\varepsilon_2)=t, u(\varepsilon_2)=u and v(\varepsilon_2)=c.$$

It is easy to see

Lemma 3. If $\varepsilon_2 = \sqrt{\gamma_2} \in K$, then c = -1.

We can judge whether $\varepsilon_2 = \sqrt{\eta_2}$ or not by the following proposition, using ε_1 and η_2 .

Proposition 4. Assume c = -1, and let $\delta = \eta_2(\varepsilon_1 - \varepsilon_1^{-1})^2$. Put $b = (2s(\varepsilon_1))^2 - (t(\varepsilon_1) + 2)^2$ and $a = \delta + b/\delta$.

Then a and b are natural numbers. The real number $\sqrt{\eta_2}$ belongs to K if and only if there exist rational integers a' and b' such that

 $b'^2 = b$ and $a'^2 - 2b' = a$.

If $\varepsilon_2 = \sqrt{\eta_2} \in K$, then

 $s(\varepsilon_2) = u(\varepsilon_2) = 0$, $t(\varepsilon_2) = -l$ and $v(\varepsilon_2) = -1$.

On account of (1), Propositions 3 and 4 give an effective method to determine ε_2 . It only uses ε_1 and η_2 .

§ 5. Elliptic unit. In order to define the elliptic unit η_e of K, let us prepare some notations. Denote by d_2 the discriminant of K_2 . Let the imaginary quadratic number field $\Sigma := Q(\sqrt{Dd_2})$ and the discriminant of Σ be -d. Then the galois closure of K/Q is the composite field $L := K\Sigma$, which is dihedral of degree 8 over Q and cyclic quartic over Σ . The abelian extension L/Σ has a rational conductor (f) with a natural number f, and $D = -f^2 dd_2$. Moreover, L is contained in the ring class field Σ_f modulo f over Σ . All these facts are known by Halter-Koch [1]. Let $\Re(f)$ be the ring class group of Σ modulo f, and λ be the canonical isomorphism

$$\mathfrak{A}:\mathfrak{R}(f) \cong \operatorname{Gal}(\Sigma_f/\Sigma)$$

as in § 4 of [3]. Let $\mathfrak{U} := \lambda^{-1}(\operatorname{Gal}(\Sigma_f/L))$, take and fix a class \mathfrak{h} of $\mathfrak{R}(f)$ such that $\mathfrak{h}\mathfrak{U}$ generates the cyclic quotient group $\mathfrak{R}(f)/\mathfrak{U}$. For $\mathfrak{k} \in \mathfrak{R}(f)$, denote by γ_t a complex number with positive imaginary part such that the module $Z\gamma_t + Z$ belongs to the class \mathfrak{k} . Then the elliptic unit η_e of K is defined, independent of the choice of \mathfrak{h} and γ_t , by the following:

(4) $\eta_e := \prod_{\mathbf{r} \in \mathfrak{U}} \sqrt{\mathrm{Im}(\gamma_{\mathbf{r}\mathfrak{h}})/\mathrm{Im}(\gamma_{\mathbf{r}})} |\eta(\gamma_{\mathbf{r}\mathfrak{h}})/\eta(\gamma_{\mathbf{r}})|^2.$

Here $\eta(z)$ is the Dedekind eta-function, of which an estimate as in Lemma 3 of [3] holds. Thus, when $\Re(f)$ and \mathfrak{l} are explicitly given, an approximate value of η_e can be computed.

If the discriminant D of K is given, there are finite possible pairs $\{d, d_2\}$, and it is easy to compute f. Therefore, we can count out explicitly every subgroup \mathfrak{U} of $\mathfrak{R}(f)$ which may correspond to K similarly as in the cubic case, using the results in [1]. Thus the class numbers and the fundamental units of all quartic fields K with the same discriminant D can be computed as described above.

§ 6. Appendix. (i) The following propositions help to determine ε_2 .

Proposition 5. If $\sqrt{\eta_e}$ does not belong to K, then $\varepsilon_2 \neq \eta_2$. Proposition 6. If $\sqrt{\eta_e}$ belongs to K, then $d=d_2\equiv 8 \pmod{16}, f=4;$

or

 $d=4d_2\equiv 4 \pmod{16}, f=1, 2, 4 \text{ or } 8.$

The former follows from (2) and the fact that h' divides h, and the latter is proved by the results in [1].

(ii) The galois closure L of K/Q contains a totally complex quartic subfield F not conjugate to K. Further algorithm to compute the class number and the group of units of F exists. It uses the results in [2].

References

- F. Halter-Koch: Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe. J. Number Theory, 3, 412-443 (1971).
- [2] K. Nakamula: On the group of units of a non-galois quartic or sextic number field. Proc. Japan Acad., 56A, 77-81 (1980).
- [3] ——: Class number calculation and elliptic unit. I. ibid., 57A, 56-59 (1981).
- [4] R. Schertz: Die Klassenzahl der Teilkörper abelscher Erweitlungen imaginärquadratischer Zahlkörper. I. J. reine angew. Math., 295, 151-168 (1977); ditto. II. ibid., 296, 58-79 (1977).