24. On the Boundedness and the Attractivity Properties of Nonlinear Second Order Differential Equations

By Sadahisa Sakata*) and Minoru Yamamoto**)
(Communicated by Kôsaku Yosida, m. J. A., Feb. 12, 1981)

1. Introduction. In this paper we consider the boundedness and the attractivity properties of the forced second order nonlinear nonautonomous differential equation
(1) $\left(\mathrm{a}(t) x^{\prime}\right)^{\prime}+h\left(t, x, x^{\prime}\right)+q(t) f(x) g\left(x^{\prime}\right)=e\left(t, x, x^{\prime}\right)$.

In [2], J. R. Graef and P. W. Spikes discussed the same problems as above, under some conditions. The condition described in [2] on the perturbed term $e\left(t, x, x^{\prime}\right)$ implies $e\left(t, x, x^{\prime}\right) \equiv 0$ if $q(t)$ is independent of t. On the other hand, in [1], T. A. Burton considered the same problems as above for the equation
(2) $x^{\prime \prime}+f(x) h\left(x^{\prime}\right) x^{\prime}+g(x)=e(t)$ under some conditions.

For the equation (1) our results are strict extensions of those obtained in [2].

The attractivity result of Theorem 2 that obtained in [1] is a special case of our result.
2. Theorems. First, we consider the boundedness of solutions of the equation
(1) $\left(a(t) x^{\prime}\right)^{\prime}+h\left(t, x, x^{\prime}\right)+q(t) f(x) g\left(x^{\prime}\right)=e\left(t, x, x^{\prime}\right)$
or an equivalent system of equations
(3) $x^{\prime}=y, y^{\prime}=\frac{1}{a(t)}\left\{-a^{\prime}(t) y-h(t, x, y)-q(t) f(x) g(y)+e(t, x, y)\right\}$.

Assumption \mathbf{A}_{1}. (I) $a(t)$ and $q(t)$ are continuously differentiable, positive functions in $I=[0,+\infty)$,
(II) $f(x)$ is a continuous function in R^{1} which satisfies

$$
\int_{0}^{ \pm \infty} f(x) d x=+\infty
$$

(III) $g(y)$ is a continuous, positive function in R^{1},
(IV) $h(t, x, y)$ and $e(t, x, y)$ are continuous functions in $I \times R^{2}$ and $h(t, x, y)$ satisfies the inequality $y h(t, x, y) \geqq 0$ in $I \times R^{2}$.

We shall define $\alpha^{\prime}(t)_{+}=\max \left\{a^{\prime}(t), 0\right\}$ and $a^{\prime}(t)_{-}=\max \left\{-a^{\prime}(t), 0\right\}$ so that $a^{\prime}(t)=a^{\prime}(t)_{+}-a^{\prime}(t)_{\text {. }}$. We also define the functions $F(x)$ and $G(y)$ by $F(x)=\int_{0}^{x} f(u) d u$ and $G(y)=\int_{0}^{y}(v / g(v)) d v$.

[^0]Theorem 1. Suppose that Assumption A_{1} and the following conditions hold.
(4) $\quad \int_{0}^{\infty} \frac{\left|a^{\prime}(t)\right|}{a(t)} d t<\infty, \quad \int_{0}^{\infty} \frac{q^{\prime}(t)_{-}}{q(t)} d t<\infty$.
(5) $\quad y^{2} / g(y) \leqq M G(y)$ in $|y| \geqq k$ for some constants $M>0$ and $k \geqq 0$.
(6) There exists a continuous, nonnegative function $r(t)$ satisfying

$$
|e(t, x, y)| \leqq \frac{a(t)\left|q^{\prime}(t)\right|}{M q(t)}+r(t) \text { and } \int_{0}^{\infty} r(t) d t<\infty
$$

Then all solutions of (1) are bounded.
If, in addition, the functions $G(y)$ and $q(t)$ satisfy the condition
(7) $G(y) \rightarrow \infty$ as $|y| \rightarrow \infty$ and $q(t) \leqq q_{2}$ for some constant q_{2}, then all solutions of (3) are bounded.

Remark 1. From (4), there exist positive constants a_{1}, a_{2} and q_{1} such that $a_{1} \leqq \alpha(t) \leqq \alpha_{2}$ and $q_{1} \leqq q(t)$ in I, because

$$
\begin{gathered}
a(t)=a(0) \exp \left\{\int_{0}^{t} \frac{a^{\prime}(s)}{a(s)} d s\right\} \geqq a(0) \exp \left\{-\int_{0}^{\infty} \frac{a^{\prime}(s)_{-}}{a(s)} d s\right\}=a_{1} \\
a(t) \leqq \alpha(0) \exp \left\{\int_{0}^{\infty} \frac{a^{\prime}(s)_{+}}{a(s)} d s\right\}=a_{2} \\
\text { and } q(t) \geqq q(0) \exp \left\{-\int_{0}^{\infty} \frac{q^{\prime}(s)_{-}}{q(s)} d s\right\}=q_{1} .
\end{gathered}
$$

Condition (III) in Assumption A_{1} implies that condition (5) is equivalent to the following condition :
(5) There exists a constant $M^{\prime}>0$ such that $y^{2} / g(y) \leqq M^{\prime} G(y)$ in R^{1}. Moreover it follows from condition (5) that $|y| / g(y) \leqq m+M G(y)$ and $y^{2} / g(y) \leqq m^{\prime}+M G(y)$ in R^{1} for some positive constants m and m^{\prime}.

Proof of Theorem 1. Since condition (II) implies that $F(x) \rightarrow \infty$ as $|x| \rightarrow \infty$, there exists a real number F_{0} satisfying the inequality $F(x)+F_{0} \geqq 0$ for arbitrary x in R^{1}. Let

$$
\begin{aligned}
V(t, x, y)= & {\left[\frac{q(t)}{a(t)} \cdot\left(F(x)+F_{0}\right)+G(y)+\frac{m}{M}\right] } \\
& \cdot \exp \left\{-\int_{0}^{t} \frac{a^{\prime}(s)_{-}}{a(s)} d s+2 \int_{0}^{t} \frac{q^{\prime}(s)_{-}}{q(s)} d s\right\}
\end{aligned}
$$

and differentiate $V(t) \equiv V(t, x(t), y(t))$ with respect to t for any solution $(x(t), y(t))$ of (3), then we have for any $t \geqq 0$,

$$
\begin{aligned}
V^{\prime}(t) \leqq & {\left[\left(-\frac{a^{\prime}(t)_{+}}{a(t)}+\frac{\left|q^{\prime}(t)\right|}{q(t)}\right) \cdot \frac{q(t)}{a(t)} \cdot\left(F(x)+F_{0}\right)+\left(-\frac{a^{\prime}(t)_{-}}{a(t)}+2 \frac{q^{\prime}(t)_{-}}{q(t)}\right)\right.} \\
& \left.\cdot\left(G(y)+\frac{m}{M}\right)-\frac{a^{\prime}(t) y^{2}}{a(t) g(y)}-\frac{y h(t, x, y)}{a(t) g(y)}+\frac{y e(t, x, y)}{a(t) g(y)}\right] \\
& \cdot \exp \left\{-\int_{0}^{t} \frac{a^{\prime}(s)_{-}}{a(s)} d s+2 \int_{0}^{t} \frac{q^{\prime}(s)_{-}}{q(s)} d s\right\} \\
\leqq & \left\{\frac{\left|q^{\prime}(t)\right|}{q(t)}+M \frac{a^{\prime}(t)_{-}}{a(t)}+2 \frac{q^{\prime}(t)_{-}}{q(t)}+\frac{M}{a_{1}} r(t)\right\} V(t)
\end{aligned}
$$

$$
+\left\{m^{\prime} \frac{a^{\prime}(t)_{-}}{a(t)}+\frac{2 m q^{\prime}(t)_{-}}{M q(t)}+\frac{m}{a_{1}} r(t)\right\} \exp \left\{2 \int_{0}^{t} \frac{q^{\prime}(s)_{-}}{q(s)} d s\right\}
$$

This gives the following inequality :

$$
\begin{aligned}
V(t) \leqq & V\left(t_{0}\right)+\int_{t_{0}}^{t}\left\{m^{\prime} \frac{a^{\prime}(s)_{-}}{a(s)}+\frac{2 m q^{\prime}(s)_{-}}{M q(s)}+\frac{m}{a_{1}} r(s)\right\} \\
& \cdot \exp \left\{2 \int_{0}^{s} \frac{q^{\prime}(\tau)_{-}}{q(\tau)} d \tau\right\} d s+\int_{t_{0}}^{t}\left\{\frac{\left|q^{\prime}(s)\right|}{q(s)}+M \frac{a^{\prime}(s)_{-}}{a(s)}\right. \\
& \left.+2 \frac{q^{\prime}(s)_{-}}{q(s)}+\frac{M}{a_{1}} r(s)\right\} V(s) d s \quad \text { for } t \geqq t_{0} \geqq 0 .
\end{aligned}
$$

From (4), (6) and Gronwall's lemma, we obtain

$$
\begin{aligned}
V(t) \leqq & {\left[V\left(t_{0}\right)+\int_{t_{0}}^{\infty}\left\{m^{\prime} \frac{a^{\prime}(s)_{-}}{a(s)}+\frac{2 m q^{\prime}(s)_{-}}{M q(s)}+\frac{m}{a_{1}} r(s)\right\} d s\right.} \\
& \left.\cdot \exp \left\{2 \int_{0}^{\infty} \frac{q^{\prime}(s)_{-}}{q(s)} d s\right\}\right] \cdot \exp \left[\int _ { t _ { 0 } } ^ { t } \left\{\frac{\left|q^{\prime}(s)\right|}{q(s)}+M \frac{a^{\prime}(s)_{-}}{a(s)}\right.\right. \\
& \left.\left.+\frac{2 q^{\prime}(s)_{-}}{q(s)}+\frac{M}{a_{1}} r(s)\right\} d s\right] \\
= & c_{1} \cdot \exp \left[\int_{t_{0}}^{t}\left\{\frac{q^{\prime}(s)}{q(s)}+M \frac{a^{\prime}(s)_{-}}{a(s)}+4 \frac{q^{\prime}(s)_{-}}{q(s)}+\frac{M}{a_{1}} r(s)\right\} d s\right] \\
\leqq & c_{1} \cdot \exp \left[\int_{0}^{\infty}\left\{M \frac{a^{\prime}(s)_{-}}{a(s)}+\frac{q^{\prime}(s)_{-}}{q(s)}+\frac{M}{a_{1}} r(s)\right\} d s\right] \cdot \frac{q(t)}{q\left(t_{0}\right)} \\
\leqq & c_{2} q(t) \quad \text { for } t \geqq t_{0} .
\end{aligned}
$$

Therefore it follows that

$$
\begin{aligned}
F(x(t)) & \leqq V(t) \frac{a(t)}{q(t)} \exp \left[\int_{0}^{t}\left\{\frac{a^{\prime}(s)_{-}}{a(s)}-2 \frac{q^{\prime}(s)_{-}}{q(s)}\right\} d s\right] \\
& \leqq c_{2} a_{2} \exp \left\{\int_{0}^{\infty} \frac{a^{\prime}(s)_{-}}{a(s)} d s\right\}
\end{aligned}
$$

and

$$
G(y(t)) \leqq c_{2} \cdot \exp \left\{\int_{0}^{\infty} \frac{a^{\prime}(s)_{-}}{a(s)} d s\right\} \cdot q(t) \quad \text { for } t \geqq t_{0}
$$

The conclusions of Theorem 1 follow from (II) and (7). Q.E.D.
Corollary 1. Suppose that Assumption A_{1}, condition (6) and the following conditions hold.
(8) $\quad a^{\prime}(t) \geqq 0, \quad \int_{0}^{\infty} \frac{q^{\prime}(t)_{-}}{q(t)} d t<\infty$ and $a(t) \leqq a_{2}$ for some $a_{2}>0$.
(9) $|y| / g(y) \leqq m+M G(y)$ in R^{1} for some positive constants m and M.
Then all solutions of (1) are bounded.
If, in addition, the functions $G(y)$ and $q(t)$ satisfy condition (7), then all solutions of (3) are bounded.

Next, we consider the attractivity properties of the equation
(10) $\quad\left(a(t) x^{\prime}\right)^{\prime}+p(t) f_{1}(x) g_{1}\left(x^{\prime}\right) x^{\prime}+q(t) f_{2}(x) g_{2}\left(x^{\prime}\right) x=e\left(t, x, x^{\prime}\right)$
or an equivalent system of equations

$$
\begin{align*}
& x^{\prime}=y, \tag{11}\\
& y^{\prime}=\frac{1}{a(t)}\left\{-a^{\prime}(t) y-p(t) f_{1}(x) g_{1}(y) y-q(t) f_{2}(x) g_{2}(y) x+e(t, x, y)\right\}
\end{align*}
$$

Assumption \mathbf{A}_{2}. (I) $a(t)$ and $q(t)$ are continuously differentiable, positive functions in $I=[0,+\infty)$,
(V) $p(t)$ is continuous in I and satisfies $p_{1} \leqq p(t) \leqq p_{2}$ for some positive constants p_{1} and p_{2},
(VI) $f_{1}(x)$ and $f_{2}(x)$ are continuous, positive functions in R^{1} and $f_{2}(x)$ satisfies $\int_{0}^{ \pm \infty} x f_{2}(x) d x=+\infty$,
(VII) $g_{1}(y)$ and $g_{2}(y)$ are continuous, positive functions in R^{1} and $g_{2}(y)$ satisfies $\int_{0}^{ \pm \infty} \frac{y}{g_{2}(y)} d y=+\infty$,
(VIII) $\quad e(t, x, y)$ is a continuous function in $I \times R^{2}$.

We define the function $G_{0}(y)$ by $G_{0}(y)=\int_{0}^{y} \frac{v}{g_{2}(v)} d v$.
Theorem 2. Suppose that Assumption A_{2} and the following conditions hold.

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\left|a^{\prime}(t)\right|}{a(t)} d t<\infty \quad \text { and } \quad \int_{0}^{\infty} \frac{\left|q^{\prime}(t)\right|}{q(t)} d t<\infty \tag{12}
\end{equation*}
$$

(13) $\quad y^{2} / g_{2}(y) \leqq M G_{0}(y)$ in $|y| \geqq k$ for some constants $M>0$ and $k \geqq 0$.
(14) There exists a continuous nonnegative function $r(t)$ such that

$$
|e(t, x, y)| \leqq r(t) \text { in } I \times R^{2} \text { and } \int_{0}^{\infty} r(t) d t<\infty
$$

Then every solution of (11) approaches $(0,0)$ as $t \rightarrow \infty$.
We require the following lemma to prove Theorem 2.
Lemma 1. Consider the system of differential equations
(S) $\quad x^{\prime}=f(t, x), \quad f \in C[I \times D]$ where $D=\left\{x \in R^{n} \mid\|x\| \leqq K\right\}$. If there exists a Liapunov function $U(t, x)$ such that
(i) $U \in C^{1}[I \times D]$,
(ii) $a \cdot\|x\|^{2} \leqq U(t, x)$ where a is a positive constant,
(iii) $U_{(s)}^{\prime} \leqq-\lambda U+r(t)$ where λ is a positive constant, $r \in C[I]$,

$$
r(t) \geqq 0, \quad \int_{0}^{\infty} r(t) d t<\infty \quad \text { and } \quad U_{(s)}^{\prime}=\frac{\partial U}{\partial t}+f \cdot \operatorname{grad} U,
$$

then every solution, defined in the future in D, approaches the origin as $t \rightarrow \infty$.

Proof of Lemma 1. Let $x(t)$ be a solution of (S) which stays in D for $t \geqq t_{0}$ and let $U(t)=U(t, x(t)$). Then from (iii) we have that

$$
U(t) \leqq U\left(t_{0}\right) e^{-\lambda\left(t-t_{0}\right)}+\int_{t_{0}}^{t} e^{-\lambda(t-s)} r(s) d s \quad \text { for } t \geqq t_{0}
$$

This inequality and condition (ii) imply that

$$
\|x(t)\|^{2} \leqq \frac{1}{a}\left\{U\left(t_{0}\right) e^{-\lambda\left(t-t_{0}\right)}+\int_{t_{0}}^{t} e^{-\lambda(t-s)} r(s) d s\right\} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty .
$$

Therefore $x(t)$ approaches the origin as $t \rightarrow \infty$.
Q.E.D.

Proof of Theorem 2. From condition (12) there exist positive constants a_{1}, a_{2}, q_{1} and q_{2} satisfying $a_{1} \leqq \alpha(t) \leqq \alpha_{2}$ and $q_{1} \leqq q(t) \leqq q_{2}$ in I. Therefore the boundedness of solutions of (11) is an immediate consequence of Theorem 1. Then for each solution $(x(t), y(t))$ defined in $\left[t_{0}, \infty\right)$ of (11), there exists a positive constant K such that $|x(t)|+|y(t)|$ $\leqq K$ for $t \geqq t_{0}$. Now we define $F_{1}(x)=\int_{0}^{x} f_{1}(u) d u, F_{2}(x)=\int_{0}^{x} u f_{2}(u) d u$, $G_{1}(y)=\int_{0}^{y} \frac{1}{g_{1}(v)} d v$ and $G_{2}(y)=L G_{0}(y)-\frac{1}{2}\left\{G_{1}(y)\right\}^{2}$ where L is a positive constant to be determined later. Conditions (VI) and (VII) imply that
(15) $\quad c_{1} \leqq f_{1}(x) \leqq c_{2}, c_{3} \leqq f_{2}(x) \leqq c_{4}, c_{5} \leqq g_{1}(y) \leqq c_{6}$ and $c_{7} \leqq g_{2}(y) \leqq c_{8}$ in $|x|+|y| \leqq K$ for some positive constants $c_{1}, c_{2}, \cdots, c_{8}$. Let

$$
V(t, x, y)=\frac{1}{2 q(t)}\left\{\boldsymbol{F}_{1}(x)+G_{1}(y)\right\}^{2}+\frac{L}{a(t)} \boldsymbol{F}_{2}(x)+\frac{1}{q(t)} G_{2}(y)
$$

for $t \in I,|x|+|y| \leqq K$, then we have

$$
V(t, x, y) \geqq \frac{L}{a(t)} F_{2}(x)+\frac{1}{q(t)} G_{2}(y) \geqq \frac{c_{3} L}{2 a_{2}} x^{2}+\frac{1}{q_{2}}\left(\frac{L}{2 c_{8}}-\frac{1}{2 c_{5}^{2}}\right) y^{2} \geqq 0
$$

for L large enough. Differentiating $V(t) \equiv V(t, x(t), y(t))$ with respect to t for any solution $(x(t), y(t))$ of (11), we obtain

$$
\begin{aligned}
V^{\prime}(t)= & -\frac{q^{\prime}(t)}{2 q(t)^{2}}\left\{F_{1}(x) G_{1}(y)\right\}^{2}+\frac{1}{q(t)} f_{1}(x) y\left\{F_{1}(x)+G_{1}(y)\right\}-\frac{a^{\prime}(t) F_{1}(x) y}{a(t) q(t) g_{1}(y)} \\
& -\frac{p(t)}{a(t) q(t)} F_{1}(x) f_{1}(x) y-\frac{F_{1}(x) f_{2}(x) g_{2}(y) x}{a(t) g_{1}(y)}-\frac{L a^{\prime}(t)}{a(t)^{2}} F_{2}(x) \\
& -\frac{q^{\prime}(t)}{q(t)^{2}} G_{2}(y)-\frac{L a^{\prime}(t) y^{2}}{a(t) q(t) g_{2}(y)}-\frac{L p(t) f_{1}(x) g_{1}(y) y^{2}}{a(t) q(t) g_{2}(y)}+\frac{e(t, x, y)}{a(t) q(t)} \\
& \times\left\{\frac{F_{1}(x)}{g_{1}(y)}+\frac{L y}{g_{2}(y)}\right\} \leqq \frac{q^{\prime}(t)-}{q(t)}\left[\frac{1}{2 q(t)}\left\{F_{1}(x)+G_{1}(y)\right\}^{2}+\frac{1}{q(t)}\left|G_{2}(y)\right|\right] \\
& +\frac{a^{\prime}(t)-}{a(t)}\left\{\frac{\left|F_{1}(x) y\right|}{q(t) g_{1}(y)}+\frac{L}{a(t)} F_{2}(x)+\frac{L y^{2}}{q(t) g_{2}(y)}\right\} \\
& +\frac{r(t)}{a(t) q(t)}\left\{\frac{\left|F_{1}(x)\right|}{g_{1}(y)}+\frac{L|y|}{g_{2}(y)}\right\}+\frac{f_{1}(x)}{q(t)}\left\{\left|F_{1}(x) y\right|+y G_{1}(y)\right\} \\
& +\frac{p(t) f_{1}(x)}{a(t) q(t)}\left|F_{1}(x) y\right|-\frac{f_{2}(x) g_{2}(y)}{a(t) g_{1}(y)} x F_{1}(x)-\frac{L p(t) f_{1}(x) g_{1}(y)}{a(t) q(t) g_{2}(y)} y^{2} .
\end{aligned}
$$

From (15), we obtain $\left|F_{1}(x) y\right| \leqq c_{2}|x y|, y G_{1}(y) \leqq\left(1 / c_{5}\right) y^{2}$ and $x F_{1}(x) \geqq c_{1} x^{2}$ in $|x|+|y| \leqq K$. We can also choose L so large that

$$
\begin{gathered}
G_{2}(y) \geqq\left(\frac{L}{c_{8}}-\frac{1}{c_{5}^{2}}\right) y^{2} \geqq 0, \quad \frac{y^{2}}{g_{2}(y)} \leqq G_{2}(y), \\
\frac{\left|F_{1}(x)\right|}{g_{1}(y)}+\frac{L|y|}{g_{2}(y)} \leqq \frac{c_{2}}{c_{5}}|x|+\frac{L}{c_{7}}|y| \leqq\left(\frac{c_{2}}{c_{5}}+\frac{L}{c_{7}}\right) K, \\
\left\{1+\frac{p(t)}{a(t)}\right\} \frac{f_{1}(x)}{q(t)} \cdot\left|F_{1}(x) y\right|+\frac{f_{1}(x)}{q(t)} y G_{1}(y)-\frac{f_{2}(x) g_{2}(y)}{a(t) g_{1}(y)} x F_{1}(x) \\
-\frac{L p(t) f_{1}(x) g_{1}(y)}{a(t) q(t) g_{2}(y)} y^{2} \leqq-c_{9}\left(x^{2}+y^{2}\right)
\end{gathered}
$$

and $c_{10}\left(x^{2}+y^{2}\right) \leqq V(t, x, y) \leqq c_{11}\left(x^{2}+y^{2}\right)$ in $|x|+|y| \leqq K$ for some positive constants c_{9}, c_{10}, c_{11}. It is easy to show that $\left|F_{1}(x) y\right| / g_{1}(y) \leqq\left(c_{2} / 2 c_{5}\right) K^{2}$ in $|x|+|y| \leqq K$. Thus we have the estimates

$$
\begin{aligned}
V^{\prime}(t) \leqq & \frac{q^{\prime}(t)_{-}}{q(t)} V(t)+(1+L) \frac{a^{\prime}(t)_{-}}{a(t)} V(t)+\frac{c_{2} K^{2}}{2 c_{5} q_{1}} \cdot \frac{a^{\prime}(t)_{-}}{a(t)} \\
& +\frac{K}{a_{1} q_{1}}\left(\frac{c_{2}}{c_{5}}+\frac{L}{c_{7}}\right) r(t)-c_{9}\left(x^{2}+y^{2}\right) \\
& \leqq L_{1}\left[\left\{\frac{q^{\prime}(t)_{-}}{q(t)}+\frac{a^{\prime}(t)_{-}}{a(t)}\right\} V(t)+\frac{a^{\prime}(t)_{-}}{a(t)}+r(t)\right]-c_{8}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

for some constant $L_{1}>0$. Define

$$
W(t, x, y)=V(t, x, y) \cdot \exp \left[-L_{1} \int_{0}^{t}\left\{\frac{q^{\prime}(s)_{-}}{q(s)}+\frac{a^{\prime}(s)_{-}}{a(s)}\right\} d s\right]
$$

then we obtain

$$
W(t, x, y) \geqq c_{10} \cdot \exp \left[-L_{1} \int_{0}^{\infty}\left\{\frac{q^{\prime}(s)_{-}}{q(s)}+\frac{a^{\prime}(s)_{-}}{a(s)}\right\} d s\right] \cdot\left(x^{2}+y^{2}\right)
$$

and
$W^{\prime}(t) \leqq\left\{L_{1}\left(\frac{a^{\prime}(t)_{-}}{a(t)}+r(t)\right)-c_{9}\left(x^{2}+y^{2}\right)\right\} \exp \left[-L_{1} \int_{0}^{t}\left\{\frac{q^{\prime}(s)_{-}}{q(s)}+\frac{a^{\prime}(s)_{-}}{a(s)}\right\} d s\right]$, where $W(t, x(t), y(t))$ for any solution $(x(t), y(t))$ of (11). We will use Lemma 1 to complete the proof of Theorem 2.
Q.E.D.

Remark 2. If we replace condition (6) by the following condition:
$(6)^{\prime} \quad|e(t, x, y)| \leqq \frac{\alpha(t)\left|q^{\prime}(t)\right|}{M q(t)}+r_{1}(t)+r_{2}(t)|y|, \int_{0}^{\infty} r_{i}(t) d t<\infty(i=1,2)$, then the same conclusions as those of Theorem 1 and those of Corollary 1 are valid.

Remark 3. If we replace condition (14) by
$(14)^{\prime} \cdot|e(t, x, y)| \leqq r_{1}(t)+r_{2}(t)|y|, \int_{0}^{\infty} r_{i}(t) d t<\infty(i=1,2)$,
then the same conclusion as that of Theorem 2 is valid.
Remark 4. If we replace condition (14) by
$(14)^{\prime \prime}|e(t, x, y)| \leqq r_{1}(t)+r_{2}(t)|x|+r_{3}(t)|y|, \int_{0}^{\infty} r_{i}(t) d t<\infty(i=1,2,3)$, and we assume that $f_{2}(x) \geqq \varepsilon>0$ in R^{1} and either that $y^{2} / g_{2}(y) \leqq M G_{0}(y)$, $g_{2}(y) \geqq \delta>0$ in R^{1} or that $|y| / g_{2}(y) \leqq M \sqrt{G_{0}(y)}, g_{2}(y) \leqq \gamma$ in R^{1}, then the same conclusion as that of Theorem 2 is valid.

The proofs of these results are analogous to that of J. W. Heidel [3] and will be published later.

References

[1] T. A. Burton: On the equation $x^{\prime \prime}+f(x) h\left(x^{\prime}\right) x^{\prime}+g(x)=e(t)$. Ann. Math. Pura Appl., 85, 277-285 (1970).
[2] J. R. Graef and P. W. Spikes: Boundedness and convergence to zero of solutions of a forced second-order nonlinear differential equation. J. Math. Anal. Appl., 62, 295-309 (1978).
[3] J. W. Heidel: A Liapunov function for a generalized Liénard equation. ibid., 39, 192-197 (1972).

[^0]: *) Osaka University.
 **) Nara Medical University.

