21. On the Trotter Product Formula

By Tetsuya Koyama and Takashi Ichinose
Department of Mathematics, Hokkaido University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1981)

Introduction. Kato [5] (cf. Kato-Masuda [8]) proved the Trotter product formula s - $\lim _{n \rightarrow \infty}\left[e^{-t A / n} e^{-t B / n}\right]^{n}=e^{-t(A+B)} P$ for the form sum $A+B$ of self-adjoint operators A and B which are bounded from below in a Hilbert space \mathcal{H}. Here P is the orthogonal projection of \mathscr{H} onto the closure of $\mathscr{D}\left(|A|^{1 / 2}\right) \cap \mathscr{D}\left(|B|^{1 / 2}\right)$. The purpose of this paper is to extend this result to prove a product formula for the form sum of self-adjoint operators which are not necessarily bounded from below. The product formula obtained involves a "truncation" procedure.

1. Notations and results. First we consider the case of two operators. Let A and B be self-adjoint operators in a Hilbert space \mathcal{H} with spectral families $\left\{E_{A}(\lambda)\right\}$ and $\left\{E_{B}(\lambda)\right\}$, respectively. Let A_{+}and A_{-}be the positive and negative parts of A, i.e. $A_{+}=A E_{A}([0, \infty)) \geqslant 0$, $A_{-}=-A E_{A}((-\infty, 0)) \geqslant 0$, and $A=A_{+}-A_{-}$. Define B_{+}and B_{-}similarly for B.

Assume that $\mathscr{D}\left(A_{+}^{1 / 2}\right) \subset \mathscr{D}\left(B_{-}^{1 / 2}\right)$ and $\mathscr{D}\left(B_{+}^{1 / 2}\right) \subset \mathscr{D}\left(A_{-}^{1 / 2}\right)$, and that there exist constants $\alpha \geqslant 0$ and $0 \leqslant \beta<1$ such that

$$
\begin{array}{ll}
\left\|A_{-}^{1 / 2} u\right\|^{2} \leqslant \alpha\|u\|^{2}+\beta\left\|B_{+}^{1 / 2} u\right\|^{2}, & u \in \mathscr{D}\left(B_{+}^{1 / 2}\right), \tag{1}\\
\left\|B_{-}^{1 / 2} u\right\|^{2} \leqslant \alpha\|u\|^{2}+\beta\left\|A_{+}^{1 / 2} u\right\|^{2}, & u \in \mathscr{D}\left(A_{+}^{1 / 2}\right) .
\end{array}
$$

Set $\mathscr{D}=\mathscr{D}\left(A_{+}^{1 / 2}\right) \cap \mathscr{D}\left(B_{+}^{1 / 2}\right)$, and let P be the orthogonal projection of \mathscr{H} onto the closure $\overline{\mathscr{D}}$ of \mathscr{D}. Then the quadratic form

$$
u \mapsto\left\|A_{+}^{1 / 2} u\right\|^{2}+\left\|B_{+}^{1 / 2} u\right\|^{2}-\left\|A_{-}^{1 / 2} u\right\|^{2}-\left\|B_{-}^{1 / 2} u\right\|^{2}, \quad u \in \mathscr{D},
$$

is bounded from below and closed. The form sum of A and B is defined as the self-adjoint operator in the Hilbert space $\overline{\mathscr{D}}$ associated with (2) and denoted by $A \dot{+} B$.

For each $0<\tau \leqslant \infty, \mathcal{F}(\tau)$ is the class of bounded real-valued functions $h(t, \lambda)$ on $[0, \tau) \times \boldsymbol{R}$ satisfying the following conditions:
(i) for each fixed $\lambda, h(t, \lambda)$ is continuous in t at $t=0$ with

$$
h(0, \lambda)=1, \quad(\partial / \partial t) h(0, \lambda)=-\lambda ;
$$

(ii) for each fixed $t, h(t, \lambda)$ is Borel measurable in λ with

$$
1 \leqslant h(t, \lambda) \text { for } \lambda<0, h(t, 0)=1 \text { and } 0 \leqslant h(t, \lambda) \leqslant 1 \text { for } \lambda>0 ;
$$

(iii) there is a constant M such that $|1-h(t, \lambda)| \leqslant M t|\lambda|, 0 \leqslant t<\tau$, $\lambda \in \boldsymbol{R}$.

The main result is the following product formula.
Theorem 1. Let $f(t, \lambda)$ and $g(t, \lambda)$ be in $\mathscr{F}(\tau)$ for some $0<\tau \leqslant \infty$, and assume that there exists a constant $z>1$ such that

$$
\begin{align*}
& \beta \sup _{\lambda<0}(t \lambda)^{-1}\left(1-f(t, \lambda)^{2 z}\right) \leqslant \inf _{i>0}(t \lambda)^{-1}\left(g(t, \lambda)^{-2}-1\right), 0<t<\tau, \tag{3}\\
& \beta \sup _{\lambda<0}(t \lambda)^{-1}\left(1-g(t, \lambda)^{2 z}\right) \leqslant \inf _{\lambda>0}(t \lambda)^{-1}\left(f(t, \lambda)^{-2}-1\right), 0<t<\tau .
\end{align*}
$$

Then

$$
\begin{equation*}
[f(t / n, A) g(t / n, B)]^{n} \underset{s}{\longrightarrow} e^{-t\left(\dot{A}_{B}\right)} P, \quad n \rightarrow \infty, \quad t>0 . \tag{4}
\end{equation*}
$$

The convergence is uniform in $t \in[0, T]$ for every $T>0$ when applied to $u \in \overline{\mathscr{D}}$, and in $t \in\left[T^{\prime}, T\right]$ for every $0<T^{\prime}<T$ when applied to $u \perp \mathscr{D}$.

Examples. For each $0<\tau \leqslant \infty, \mathscr{F}(\tau)$ includes the following functions obtained by truncating the functions $e^{-t \lambda}$ and $(1+t \lambda / k)^{-k}, k=1$, $2, \cdots$, where $\lambda<-\delta / t$:

$$
\begin{align*}
& e^{\delta} \chi_{(-\infty,-\delta)}(t \lambda)+e^{-t \lambda} \chi_{[-\delta, \infty)}(t \lambda), \tag{5}\\
& e^{-t a} \chi_{(-\infty,-\delta)}(t \lambda)+e^{-t \lambda} \chi_{[-\delta, \infty)}(t \lambda), \tag{6}\\
& (1-\delta / k)^{-k} \chi_{(-\infty,-\delta)}(t \lambda)+(1+t \lambda / k)^{-k} \chi_{[-\delta, \infty)}(t \lambda), \tag{7}\\
& (1+t a / k)^{-k} \chi_{(-\infty,-\delta)}(t \lambda)+(1+t \lambda / k)^{-k} \chi_{[-\delta, \infty)}(t \lambda) .
\end{align*}
$$

Here δ and a are arbitrary constants with $0<\delta<k$ and $-\delta / \tau \leqslant a \leqslant 0$ where $-\delta / \tau=0$ if $\tau=\infty$, and $\chi_{K}(x)$ denotes the characteristic function of $K \subset \boldsymbol{R}$. Moreover if δ is so chosen that $\beta\left((1-\delta / k)^{-2 k}-1\right)<2 \delta$, then each pair of the functions (5)-(8) satisfies the condition (3) with $z=-\log (1+2 \delta / \beta) / 2 k \log (1-\delta / k)>1$. Thus Theorem 1 is applicable.

Remark 1. If A (resp. B) is bounded from below, $f(t, \lambda)$ (resp. $g(t, \lambda)$) needs only to satisfy the conditions (i)-(iii) of $\mathscr{F}(\tau)$ as a bounded real-valued function defined on $[0, \tau) \times[\inf \sigma(A), \infty)(r e s p .[0, \tau) \times[\inf$ $\sigma(B), \infty)$). Here $\sigma(A)$ and $\sigma(B)$ denote the spectra of A and B. Thus Theorem 1 includes Kato's result [5] for both A and B nonnegative; the condition (3) is trivially satisfied with $\beta=0$.

Remark 2. The condition $\beta<1$ in (1) is necessary for $z>1$. In fact, we see by the condition (i) of $\mathscr{F}(\tau)$ that $\beta z \leqslant 1$, letting $t \downarrow 0$ in (3).

Remark 3. If $f(t, \lambda)$ and $g(t, \lambda)$ are in $\mathscr{F}(\infty)$ and satisfy (3), it will be seen in the proof of Theorem 1 that the approximant operators in (4) are uniformly quasi-bounded, i.e. $\left\|[f(t / n, A) g(t / n, B)]^{n}\right\| \leqslant C e^{r t}$, $t>0, n=1,2, \cdots$, with some constants C and γ. However, for instance, $\left[e^{-t A / n} e^{-t B / n}\right]^{n}$ may not be uniformly quasi-bounded as is seen in the next example. The essence of the theorem is that a product formula holds if those truncated functions (5) and (6) are used instead of $e^{-t \lambda}$. In this connection we also refer to Ichinose [3].

Example. Let $\mathscr{G}=L^{2}\left(\boldsymbol{R}^{l}\right)$. Let $V(x)$ be a real-valued measurable function on \boldsymbol{R}^{l}, and let Δ be the l-dimensional Laplacian. If $\|\left[e^{-t V / n}\right.$ $\left.e^{t / / n}\right]^{n} \| \leqslant C e^{r t}, t>0, n=1,2, \cdots$, then $-\gamma \leqslant V(x)$ a.e. on \boldsymbol{R}^{l}. In fact, we need only to show that for every $R>0$ and $\varepsilon>0$, the measure $m(K(R, \varepsilon))$ of $K(R, \varepsilon)=\left\{x \in \boldsymbol{R}^{l} ; V(x)<-\gamma-\varepsilon,|x| \leqslant R\right\}$ is zero. Note that

$$
\begin{aligned}
& {\left[e^{-t V(x)} e^{t\rfloor}\right]^{n} \chi_{K(R, s)}(x)} \\
& \quad \geqslant\left[e^{-t V(x)} e^{t / 1}\right]^{n-1} e^{(\gamma+\omega) t-R^{2} / t}(4 \pi t)^{-l / 2} m(K(R, \varepsilon)) \chi_{K(R, s)}(x) \\
& \quad \geqslant e^{n\left(\gamma(t+\epsilon) t-n R^{2} / t\right.}(4 \pi t)^{-n l / 2} m(K(R, \varepsilon))^{n} \chi_{K(R, s)}(x) .
\end{aligned}
$$

Thus if $m(K(R, \varepsilon)) \neq 0$, we have $C^{1 / n} e^{-t \varepsilon+R^{2} / t}(4 \pi t)^{t / 2} \geqslant m(K(R, \varepsilon)), t>0$, by assumption. But it follows by letting $t \rightarrow \infty$ that $m(K(R, \varepsilon))=0$. This is a contradiction.

Next consider the case of several operators. For each $j=1, \cdots$, m, let $A_{\text {, }}$ be a self-adjoint operator in \mathscr{H} with spectral family $\left\{E_{j}(\lambda)\right\}$. Define the positive and negative parts $A_{j,+}$ and $A_{j,-}$ of A_{j} as before.

Assume that, for each $j=1, \cdots, m, \mathscr{D}\left(A_{j,+}^{1 / 2}\right) \subset \mathscr{D}\left(A_{j+1,-}^{1 / 2}\right)$, and that there exist constants $\alpha \geqslant 0$ and $0 \leqslant \beta<1$ such that

$$
\begin{equation*}
\left\|A_{j+1,-}^{1 / 2} u\right\|^{2} \leqslant \alpha\|u\|^{2}+\beta\left\|A_{j,+}^{1 / 2} u\right\|^{2}, \quad u \in \mathscr{D}\left(A_{j,+}^{1 / 2}\right), \tag{9}
\end{equation*}
$$

where $A_{m+1}=A_{1} . \quad$ Set $\mathscr{D}=\bigcap_{j=1}^{m} \mathscr{D}\left(A_{j,+}^{1 / 2}\right)$. Then the quadratic form

$$
\begin{equation*}
u \mapsto \sum_{j=1}^{m}\left\|A_{j,+}^{1 / 2} u\right\|^{2}-\sum_{j=1}^{m}\left\|A_{j,-}^{1 / 2} u\right\|^{2}, \quad u \in \mathscr{D} \tag{10}
\end{equation*}
$$

is bounded from below and closed. The form sum $A_{1} \dot{+} \cdot \dot{+} A_{m}$ of the $A_{j}, j=1, \cdots, m$, is defined as the self-adjoint operator in the Hilbert space \bar{D} associated with (10).

We avoid inessential complication and content ourselves with a rather small class of functions which is included in $\mathcal{F}(\tau)$, and which contains the functions (5)-(8).

Theorem 2. Let $0<\tau \leqslant \infty$. For each $j=1, \cdots, m$, let $f_{j}(t, \lambda)$ be a bounded nonnegative function defined on $[0, \tau) \times \boldsymbol{R}$ of the form

$$
f_{j}(t, \lambda)=k_{j}(t) \chi_{(-\infty,-\delta)}(t \lambda)+f_{j}(t \lambda) \chi_{[-\delta, \infty)}(t \lambda), \quad \delta>0
$$

where (i) each $f_{5}(s)$ is a bounded nonnegative and Borel measurable function on $[-\delta, \infty)$ satisfying

$$
\begin{equation*}
\left[1-(\zeta s)^{3 / 2}\right] /\left[1+\zeta s+(\zeta s)^{2}\right] \leqslant f_{\mathfrak{j}}(s)^{5} \leqslant\left[1+(\zeta s)^{3 / 2}\right] /\left[1+\zeta s+(\zeta s)^{2}\right] \tag{11}
\end{equation*}
$$

for $s \geqslant 0$ with $\zeta=1$, and for $-\delta \leqslant s<0$ with all ζ in some common nonempty open interval $I \subset(-\infty, 0)$, and (ii) each $k_{j}(t)$ is a function on $[0, \tau)$ satisfying $1 \leqslant k_{j}(t) \leqslant f_{j}(-\delta)$. Assume that there exists a constant $z>1$ such that,

$$
\begin{equation*}
\beta \sup _{-\delta \leqslant s<0} s^{-1}\left(1-f_{j+1}(s)^{2 z}\right) \leqslant \inf _{s>0} s^{-1}\left(f_{j}(s)^{-2}-1\right), \quad j=1, \cdots, m \tag{12}
\end{equation*}
$$

where $f_{m+1}(s)=f_{1}(s)$. Then for $u \in \overline{\mathcal{D}}$,

$$
\begin{array}{r}
{\left[f_{m}\left(t / n, A_{m}\right) \cdots f_{1}\left(t / n, A_{1}\right)\right]^{n} u \rightarrow \exp \left[-t\left(A_{1} \dot{+} \cdots \dot{+} A_{m}\right)\right] u,} \tag{13}\\
n \rightarrow \infty, t \geqslant 0 .
\end{array}
$$

The convergence is uniform in $t \in[0, T]$ for every $T>0$.
Theorem 2 is somewhat weak compared with Theorem 1. The convergence in (13) for $u \perp \mathscr{D}$ seems to remain unknown (cf. [8]).
2. Proof of theorems. Proof of Theorem 1. We shall use the method of Kato [4, 5] and Simon [5, Addendum] with Vitali's theorem.

For $K \subset R$, let $\mathcal{B}(K, \mathcal{H})$ be the Banach space of all bounded \mathscr{G} valued functions on K. For $\zeta \in \boldsymbol{C}, 0 \leqslant t<\tau$ and $\lambda \in \boldsymbol{R}$ put

$$
\begin{align*}
& f(\zeta, t, \lambda)=f(t, \lambda)^{\zeta} \chi_{(-\infty, 0)}(t \lambda)+f(t, \lambda) \chi_{[0, \infty)}(t \lambda), \tag{14}\\
& g(\zeta, t, \lambda)=g(t, \lambda)^{\zeta} \chi_{(-\infty, 0)}(t \lambda)+g(t, \lambda) \chi_{[0, \infty)}(t \lambda)
\end{align*}
$$

Put

$$
U(\zeta, t)=f(\zeta, t, A) g(\zeta, t, B)
$$

The proof is divided into five steps. Let $0<T^{\prime}<T$.
I. It is easy to see that if $n>T / \tau$ and $u \in \mathscr{H}$ then $U(\zeta, t / n)^{n} u$ is holomorphic in ζ as a $\mathscr{B}([0, T], \mathcal{G})$-valued function.
II. There exist constants C and $\gamma \geqslant 0$ such that, for each n with $n>T / \tau$ and for each ζ with $\operatorname{Re} \zeta<z,\left\|U(\zeta, t / n)^{n}\right\| \leqslant C e^{\tau t}, 0 \leqslant t \leqslant T$.

To show this, first note $f(\zeta, t, A)=f\left(\zeta, t, A_{+}\right) f\left(\zeta, t,-A_{-}\right)$with

$$
\begin{aligned}
& f\left(\zeta, t, A_{+}\right)=E_{A}((-\infty, 0))+\int_{R} f(t, \lambda) \chi_{[0, \infty)}(\lambda) d E_{A}(\lambda), \\
& f\left(\zeta, t,-A_{-}\right)=\int_{R} f(t, \lambda)^{\zeta} \chi_{(-\infty, 0)}(\lambda) d E_{A}(\lambda)+E_{A}([0, \infty)),
\end{aligned}
$$

and similarly for $g(\zeta, t, B)$. For $0<t<\tau$, put

$$
M(f, t)=\sup _{\lambda<0}(t \lambda)^{-1}\left(1-f(t, \lambda)^{2 z}\right), \quad M(g, t)=\sup _{\lambda<0}(t \lambda)^{-1}\left(1-g(t, \lambda)^{2 z}\right) .
$$

By the condition (iii) of $\mathcal{F}(\tau)$ and (3), both $M(f, t)$ and $M(g, t)$ are bounded by some constant M and $\beta M(f, t) t \lambda g(t, \lambda)^{2} \leqslant 1-g(t, \lambda)^{2}, 0<t<\tau$, $\lambda \geqslant 0$. Then for $u \in \mathscr{H}$ we have in view of (1)

$$
\begin{aligned}
\| f(\zeta, & \left.t,-A_{-}\right) g\left(\zeta, t, B_{+}\right) u \|^{2} \\
\leqslant & \int_{R}\left[f(t, \lambda)^{2 z} \chi_{(-\infty, 0)}(t \lambda)+\chi_{[0, \infty)}(t \lambda)\right] d\left\|E_{A}(\lambda) g\left(\zeta, t, B_{+}\right) u\right\|^{2} \\
\leqslant & \int_{R}\left[M(f, t) t|\lambda| \chi_{(-\infty, 0)}(t \lambda)+1\right] d\left\|E_{A}(\lambda) g\left(\zeta, t, B_{+}\right) u\right\|^{2} \\
= & M(f, t) t\left\|A_{-}^{1 / 2} g\left(\zeta, t, B_{+}\right) u\right\|^{2}+\left\|g\left(\zeta, t, B_{+}\right) u\right\|^{2} \\
\leqslant & \beta M(f, t) t\left\|B_{+}^{1 / 2} g\left(\zeta, t, B_{+}\right) u\right\|^{2}+(1+\alpha M(f, t) t)\left\|g\left(\zeta, t, B_{+}\right) u\right\|^{2} \\
= & \int_{R}\left[(\beta M(f, t) t \lambda+1+\alpha M(f, t) t) g(t, \lambda)^{2} \chi_{[0, \infty)}(t \lambda)\right. \\
& \left.\quad+(1+\alpha M(f, t) t) \chi_{(-\infty, 0)}(t \lambda)\right] d\left\|E_{B}(\lambda) u\right\|^{2} \\
\leqslant & (1+\alpha M(f, t) t)\|u\|^{2} \leqslant(1+\alpha M t)\|u\|^{2} \leqslant e^{\alpha M t}\|u\|^{2} .
\end{aligned}
$$

Thus $\left\|f\left(\zeta, t,-A_{-}\right) g\left(\zeta, t, B_{+}\right)\right\| \leqslant e^{\alpha M t / 2}$, and similarly

$$
\left\|g\left(\zeta, t,-B_{-}\right) f\left(\zeta, t, A_{+}\right)\right\| \leqslant e^{\alpha M t / 2}
$$

for $0 \leqslant t<\tau$. It follows with $\gamma=\alpha M$ and $C=\sup \left\{g(s, \lambda)^{z}: 0 \leqslant s<\tau, \lambda \in \boldsymbol{R}\right\}$ that

$$
\begin{aligned}
& \left\|U(\zeta, t / n)^{n}\right\| \leqslant\left\|f\left(\zeta, t / n, A_{+}\right)\right\| \\
& \quad \cdot\left[\left\|f\left(\zeta, t / n,-A_{-}\right) g\left(\zeta, t / n, B_{+}\right)\right\|\left\|g\left(\zeta, t / n,-B_{-}\right) f\left(\zeta, t / n, A_{+}\right)\right\|\right]^{n-1} \\
& \cdot\left\|f\left(\zeta, t / n,-A_{-}\right) g\left(\zeta, t / n, B_{+}\right)\right\|\left\|g\left(\zeta, t / n,-B_{-}\right)\right\| \leqslant C e^{r t}, \\
& \quad 0 \leqslant t \leqslant T, \quad n>T / \tau . \\
& \text { III. } \quad U(\zeta, t / n)^{n} \xrightarrow[s]{\longrightarrow} \exp \left[-t\left(A_{\zeta} \dot{+} B_{\zeta}\right)\right] P, \quad n \rightarrow \infty, t>0, \quad \zeta<0 . \quad \text { (15) }
\end{aligned}
$$

Here the convergence is in the same sense as in the statement of the theorem, and $A_{\zeta}=A_{+}-\zeta A_{-}, B_{\zeta}=B_{+}-\zeta B_{-}$.

To show convergence for $u \in \overline{\mathscr{D}}$, by Chernoff's theorem [1, Theorem 1.1], it suffices to prove that $\left[1+t^{-1}(1-U(\zeta, t))\right]^{-1} \underset{s}{\longrightarrow}\left[1+\left(A_{\zeta} \dot{+} B_{\zeta}\right)\right]^{-1} P$, $t \downarrow 0$. This, however, can be shown by the same method as in Kato [5] if we note with the conditions (ii) and (iii) of $\mathscr{F}(\tau)$ that

$$
0 \leqslant f(\zeta, t, A) \leqslant 1, \quad 0 \leqslant t<\tau,
$$

$$
\begin{aligned}
& {[1-f(\zeta, t, A)]^{1 / 2} \longrightarrow 0, \quad 1-f(\zeta, t, A)^{1 / 2} \xrightarrow[s]{\longrightarrow} 0, \quad t \downarrow 0,} \\
& t^{-1 / 2}[1-f(\zeta, t, A)]^{1 / 2} u \longrightarrow A_{\zeta}^{1 / 2} u, \quad t \downarrow 0, \quad u \in \mathscr{D}\left(|A|^{1 / 2}\right),
\end{aligned}
$$

and similarly for $g(\zeta, t, B)$. For convergence for $u \perp \mathscr{D}$, the same argument as in Kato [4] is valid.
IV. It can be seen by (1) that, for ζ with $\operatorname{Re} \zeta<z$, the family of the quadratic forms

$$
\begin{equation*}
u \mapsto\left\|A_{+}^{1 / 2} u\right\|^{2}+\left\|B_{+}^{1 / 2} u\right\|^{2}-\zeta\left\|A_{-}^{1 / 2} u\right\|^{2}-\zeta\left\|B_{-}^{1 / 2} u\right\|^{2}, \quad u \in \mathscr{D}, \tag{16}
\end{equation*}
$$

is holomorphic of type (a) (Kato [7, Chap. 7, §4]). Therefore for each fixed $t \geqslant 0$ and $u \in \mathcal{F}$, $\exp \left[-t\left(A_{\zeta} \dot{+} B_{\zeta}\right)\right] P u$ is holomorphic in $\zeta, \operatorname{Re} \zeta<z$, where $A_{\zeta} \dot{+} B_{\zeta}$ denotes the m-sectorial operator in the Hilbert space $\overline{\mathscr{D}}$ associated with (16).
V. It has been seen in I and II that, for each $u \in \overline{\mathcal{D}}$, the functions $U(\zeta, t / n)^{n} u$ are uniformly bounded and holomorphic in $\zeta, \operatorname{Re} \zeta<z$, as $\mathcal{B}([0, T], \mathscr{C})$-valued functions. And this sequence converges to $\exp \left[-t\left(A_{\zeta} \dot{+} B_{\zeta}\right)\right] P u$ as $n \rightarrow \infty$ for $\zeta<0$. Therefore, by virtue of Vitali's theorem, we obtain (15) for all ζ with $\operatorname{Re} \zeta<z$, and in particular, the desired result (4) with $\zeta=1$ when applied to $u \in \overline{\mathscr{D}}$. For $u \perp \mathscr{D}$, apply Vitali's theorem to the $U(\zeta, t / n)^{n} u$ as $\mathscr{B}\left(\left[T^{\prime}, T\right], \mathcal{H}\right)$-valued functions.

Proof of Theorem 2. For each $f_{j}(t, \lambda)$, define $f_{j}(\zeta, t, \lambda)$ as in (14) and $A_{j, \zeta}=A_{j,+}-\zeta A_{j,-}$. Set $U(\zeta, t)=f_{m}\left(\zeta, t, A_{m}\right) \cdots f_{1}\left(\zeta, t, A_{1}\right)$. Then the same arguments as in the proof of Theorem 1 apply to $U(\zeta, t / n)^{n} u$, with $u \in \bar{D}$, except for the proof of $U(\zeta, t / n)^{n} u \rightarrow e^{-t c} \zeta, n \rightarrow \infty, t>0$, $\zeta \in I$. Here $C_{\zeta}=A_{1, \zeta} \dot{+} \cdots+A_{m, \zeta}$. To show this, put for each fixed $x \in \mathscr{A}, \quad y_{0}(t)=\left[1+t^{-1}(1-U(\zeta, t))\right]^{-1} x, \quad y_{j}(t)=f_{j}\left(\zeta, t, A_{j}\right) y_{j-1}(t), \quad 0<t<\tau$, $j=1, \cdots, m$. In view of Chernoff's theorem, we have only to show that $y_{0}(t) \rightarrow\left[1+C_{\zeta}\right]^{-1} P x, t \downarrow 0$. Here P denotes the orthogonal projection of \mathscr{H} onto $\overline{\mathscr{D}}$. We shall use the method in Kato-Masuda [8].

Since $\left\|y_{j}(t)\right\| \leqslant\|x\|$ for $0<t<\tau$, there exists a sequence $t_{\nu} \downarrow 0$ and $y_{0}^{*} \in \mathscr{H}$ such that $y_{j}\left(t_{\nu}\right) \underset{w}{\longrightarrow} y_{0}^{*}, \nu \rightarrow \infty$. Put $\Phi_{j, 5}(v)=2^{-1}\left\|A_{j, 5}^{1 / 2} v\right\|^{2}$ if $v \in \mathscr{D}\left(\left|A_{j}\right|^{1 / 2}\right)$ and $=\infty$ otherwise. Put

$$
\Phi_{j, \zeta}(t ; v)=2^{-1}\left\|\left(A_{j,+}+\zeta A_{j} E_{j}([-\delta / t, 0))\right)^{1 / 2} v\right\|^{2}
$$

if $v \in \mathscr{D}\left(A_{j,+}^{1 / 2}\right)$ and $=\infty$ otherwise. Then (11) yields, for $\zeta \in I$ and $v \in \mathcal{H}$,

$$
\begin{align*}
\sum_{j=1}^{m} \Phi_{j, 5}(v) \geqslant & \sum_{j=1}^{m} \Phi_{j, 5}\left(t_{\nu} ; y_{j}\left(t_{\nu}\right)\right)+\operatorname{Re}\left(v-y_{0}\left(t_{\nu}\right), x-y_{0}\left(t_{\nu}\right)\right) \tag{17}\\
& +2^{-1} t_{\nu}\left\|x-y_{0}\left(t_{\nu}\right)\right\|^{2} .
\end{align*}
$$

Each $\Phi_{j, 5}(t ; y)$ is weakly lower semicontinuous in y and monotone decreasing in t, so that limsup ${ }_{\nu \rightarrow \infty} \Phi_{j, 5}\left(t_{\nu} ; y_{j}\left(t_{\nu}\right)\right) \geqslant \sup _{t>0} \limsup _{\nu \rightarrow \infty} \Phi_{j, 5}(t$; $\left.y_{j}\left(t_{\nu}\right)\right) \geqslant \sup _{t>0} \Phi_{j, 5}\left(t ; y_{0}^{*}\right)$. It follows from (17) with $\nu \rightarrow \infty$ that

$$
\sum_{j=1}^{m} \Phi_{j, 5}(v) \geqslant \sum_{j=1}^{m} \Phi_{j, 5}\left(y_{0}^{*}\right)+\operatorname{Re}\left(v-y_{0}^{*}, x-y_{0}^{*}\right) .
$$

This proves $y_{0}(t) \underset{w}{\longrightarrow} y_{0}^{*}=\left[1+C_{\xi}\right]^{-1} P x, t \downarrow 0$. Hence $y_{0}^{*} \in \mathscr{D}$. Strong
convergence will also be proved as in [8].
3. Applications. Let $V(x)$ be a real-valued measurable function on \boldsymbol{R}^{l}. Set $V_{+}(x)=\max \{V(x), 0\}$ and $V_{-}(x)=\max \{-V(x), 0\}$. The following facts are direct consequences of Theorem 1, although it can also be shown by the very Trotter product formula proved in Kato [5] plus the Trotter-Kato theorem [7, Chap. 9, § 2]: 1° Assume that $H^{1}\left(\boldsymbol{R}^{l}\right)$ $\cap \mathscr{D}\left(V_{+}^{1 / 2}\right)$ is dense in $L^{2}\left(\boldsymbol{R}^{l}\right)$ and V_{-}is form-bounded with respect to $-\Delta$ with relative bound <1 (For such V, see e.g. Faris [2]). Then $e^{-\left((-\Delta)^{+}+V\right)}$ is positivity preserving. In fact, the approximants in (4) with $A=-\Delta, B=V$ and the functions (5) as f, g are all positivity preserving. $\quad 2^{\circ}$ Let B be the same self-adjoint realization of the formal Schrödinger operator $T=-(\nabla-i b(x))^{2}$ as in Kato [6]. Assume that $V_{+} \in L_{l o c}^{1}\left(\boldsymbol{R}^{l}\right)$ and V_{-}is form-bounded with respect to both $-\Delta$ and B with relative bounds <1. Then B obeys pointwise domination $\left|e^{-t\left(B^{\dot{+}} V\right)} v\right| \leqslant e^{-t[(-\Delta) \dot{+}(-V-)]}|v|$, a.e. on $\boldsymbol{R}^{l}, t \geqslant 0$, for $v \in L^{2}\left(\boldsymbol{R}^{l}\right)$.

References

[1] Chernoff, P. R.: Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators. Mem. Amer. Math. Soc., 140 (1974).
[2] Faris, W. G.: The product formula for semigroups defined by Friedrichs extensions. Pacific J. Math., 22, 47-70 (1967).
[3] Ichinose, T.: A product formula and its application to the Schrödinger equation. Publ. RIMS, Kyoto Univ., 16, 585-600 (1980).
[4] Kato, T.: On the Trotter-Lie product formula. Proc. Japan Acad., 50, 694-698 (1974).
[5] -: Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups. Advances in Math. Supplementary Studies, 3, 185195 (1978).
[6] -: Remarks on Schrödinger operators with vector potentials. Integral Equations and Operator Theory, 1, 103-113 (1978).
[7] -: Perturbation Theory for Linear Operators (2nd ed.). SpringerVerlag, Berlin-Heidelberg-New York (1976).
[8] Kato, T., and Masuda, K.: Trotter's product formula for nonlinear semigroups generated by the subdifferentials of convex functionals. J. Math. Soc. Japan, 30, 169-177 (1978).

