21. On the Trotter Product Formula

By Tetsuya Koyama and Takashi ICHINOSE Department of Mathematics, Hokkaido University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1981)

Introduction. Kato [5] (cf. Kato-Masuda [8]) proved the Trotter product formula $s\text{-}\lim_{n\to\infty}[e^{-tA/n}e^{-tB/n}]^n=e^{-t(A+B)}P$ for the form sum A+B of self-adjoint operators A and B which are bounded from below in a Hilbert space \mathcal{H} . Here P is the orthogonal projection of \mathcal{H} onto the closure of $\mathcal{D}(|A|^{1/2})\cap\mathcal{D}(|B|^{1/2})$. The purpose of this paper is to extend this result to prove a product formula for the form sum of self-adjoint operators which are not necessarily bounded from below. The product formula obtained involves a "truncation" procedure.

1. Notations and results. First we consider the case of two operators. Let A and B be self-adjoint operators in a Hilbert space \mathcal{H} with spectral families $\{E_A(\lambda)\}$ and $\{E_B(\lambda)\}$, respectively. Let A_+ and A_- be the positive and negative parts of A, i.e. $A_+ = AE_A([0, \infty)) \geqslant 0$, $A_- = -AE_A((-\infty, 0)) \geqslant 0$, and $A = A_+ - A_-$. Define B_+ and B_- similarly for B.

Assume that $\mathcal{D}(A_{+}^{1/2})\subset\mathcal{D}(B_{-}^{1/2})$ and $\mathcal{D}(B_{+}^{1/2})\subset\mathcal{D}(A_{-}^{1/2})$, and that there exist constants $\alpha \geqslant 0$ and $0\leqslant \beta < 1$ such that

$$||A_{-}^{1/2}u||^{2} \leqslant \alpha ||u||^{2} + \beta ||B_{+}^{1/2}u||^{2}, \qquad u \in \mathcal{D}(B_{+}^{1/2}), ||B_{-}^{1/2}u||^{2} \leqslant \alpha ||u||^{2} + \beta ||A_{+}^{1/2}u||^{2}, \qquad u \in \mathcal{D}(A_{+}^{1/2}).$$
 (1)

Set $\mathcal{D} = \mathcal{D}(A_+^{1/2}) \cap \mathcal{D}(B_+^{1/2})$, and let P be the orthogonal projection of \mathcal{H} onto the closure $\overline{\mathcal{D}}$ of \mathcal{D} . Then the quadratic form

$$u\mapsto \|A_+^{1/2}u\|^2+\|B_+^{1/2}u\|^2-\|A_-^{1/2}u\|^2-\|B_-^{1/2}u\|^2, \quad u\in\mathcal{D},$$
 (2) is bounded from below and closed. The form sum of A and B is defined as the self-adjoint operator in the Hilbert space $\overline{\mathcal{D}}$ associated

For each $0 < \tau \le \infty$, $\mathcal{F}(\tau)$ is the class of bounded real-valued functions $h(t, \lambda)$ on $[0, \tau) \times R$ satisfying the following conditions:

- (i) for each fixed λ , $h(t, \lambda)$ is continuous in t at t=0 with $h(0, \lambda)=1$, $(\partial/\partial t)h(0, \lambda)=-\lambda$;
- (ii) for each fixed t, $h(t, \lambda)$ is Borel measurable in λ with $1 \le h(t, \lambda)$ for $\lambda < 0$, h(t, 0) = 1 and $0 \le h(t, \lambda) \le 1$ for $\lambda > 0$;
- (iii) there is a constant M such that $|1-h(t,\lambda)| \leq Mt|\lambda|$, $0 \leq t < \tau$, $\lambda \in \mathbb{R}$.

The main result is the following product formula.

with (2) and denoted by $A \dotplus B$.

Theorem 1. Let $f(t, \lambda)$ and $g(t, \lambda)$ be in $\mathcal{F}(\tau)$ for some $0 < \tau \le \infty$, and assume that there exists a constant z > 1 such that

$$\beta \sup_{\lambda < 0} (t\lambda)^{-1} (1 - f(t, \lambda)^{2z}) \leq \inf_{\lambda > 0} (t\lambda)^{-1} (g(t, \lambda)^{-2} - 1), \ 0 < t < \tau,$$

$$\beta \sup_{\lambda < 0} (t\lambda)^{-1} (1 - g(t, \lambda)^{2z}) \leq \inf_{\lambda > 0} (t\lambda)^{-1} (f(t, \lambda)^{-2} - 1), \ 0 < t < \tau.$$
(3)

Then

$$[f(t/n, A)g(t/n, B)]^n \xrightarrow{g} e^{-t(A+B)}P, \quad n\to\infty, \quad t>0.$$
 (4)

The convergence is uniform in $t \in [0, T]$ for every T > 0 when applied to $u \in \overline{\mathcal{D}}$, and in $t \in [T', T]$ for every 0 < T' < T when applied to $u \perp \mathcal{D}$.

Examples. For each $0 < \tau \le \infty$, $\mathcal{F}(\tau)$ includes the following functions obtained by truncating the functions $e^{-t\lambda}$ and $(1+t\lambda/k)^{-k}$, k=1, $2, \dots$, where $\lambda < -\delta/t$:

$$e^{\delta}\chi_{(-\infty,-\delta)}(t\lambda) + e^{-t\lambda}\chi_{(-\delta,\infty)}(t\lambda), \tag{5}$$

$$e^{-ta}\chi_{(-\infty,-\delta)}(t\lambda) + e^{-t\lambda}\chi_{[-\delta,\infty)}(t\lambda), \tag{6}$$

$$(1-\delta/k)^{-k}\chi_{(-\infty,-\delta)}(t\lambda)+(1+t\lambda/k)^{-k}\chi_{[-\delta,\infty)}(t\lambda), \qquad (7)$$

$$(1+ta/k)^{-k}\chi_{(-\infty,-\delta)}(t\lambda)+(1+t\lambda/k)^{-k}\chi_{[-\delta,\infty)}(t\lambda). \tag{8}$$

Here δ and a are arbitrary constants with $0 < \delta < k$ and $-\delta/\tau \le a \le 0$ where $-\delta/\tau = 0$ if $\tau = \infty$, and $\chi_{\kappa}(x)$ denotes the characteristic function of $K \subset R$. Moreover if δ is so chosen that $\beta((1-\delta/k)^{-2k}-1) < 2\delta$, then each pair of the functions (5)-(8) satisfies the condition (3) with $z = -\log(1+2\delta/\beta)/2k\log(1-\delta/k) > 1$. Thus Theorem 1 is applicable.

Remark 1. If A (resp. B) is bounded from below, $f(t, \lambda)$ (resp. $g(t, \lambda)$) needs only to satisfy the conditions (i)–(iii) of $\mathcal{F}(\tau)$ as a bounded real-valued function defined on $[0, \tau) \times [\inf \sigma(A), \infty)$ (resp. $[0, \tau) \times [\inf \sigma(B), \infty)$). Here $\sigma(A)$ and $\sigma(B)$ denote the spectra of A and B. Thus Theorem 1 includes Kato's result [5] for both A and B nonnegative; the condition (3) is trivially satisfied with $\beta=0$.

Remark 2. The condition $\beta < 1$ in (1) is necessary for z > 1. In fact, we see by the condition (i) of $\mathcal{F}(\tau)$ that $\beta z \leq 1$, letting $t \downarrow 0$ in (3).

Remark 3. If $f(t, \lambda)$ and $g(t, \lambda)$ are in $\mathcal{F}(\infty)$ and satisfy (3), it will be seen in the proof of Theorem 1 that the approximant operators in (4) are uniformly quasi-bounded, i.e. $||[f(t/n, A)g(t/n, B)]^n|| \leq Ce^{rt}$, t>0, $n=1,2,\cdots$, with some constants C and γ . However, for instance, $[e^{-tA/n}e^{-tB/n}]^n$ may not be uniformly quasi-bounded as is seen in the next example. The essence of the theorem is that a product formula holds if those truncated functions (5) and (6) are used instead of $e^{-t\lambda}$. In this connection we also refer to Ichinose [3].

Example. Let $\mathcal{H}=L^2(R^i)$. Let V(x) be a real-valued measurable function on R^i , and let Δ be the l-dimensional Laplacian. If $\|[e^{-tV/n}e^{t\Delta/n}]^n\| \leqslant Ce^{rt}$, t>0, $n=1,2,\cdots$, then $-\gamma \leqslant V(x)$ a.e. on R^i . In fact, we need only to show that for every R>0 and $\varepsilon>0$, the measure $m(K(R,\varepsilon))$ of $K(R,\varepsilon)=\{x\in R^i;\ V(x)<-\gamma-\varepsilon,\ |x|\leqslant R\}$ is zero. Note that

$$\begin{split} &[e^{-tV(x)}e^{td}]^n \chi_{K(R,\epsilon)}(x) \\ &\geqslant [e^{-tV(x)}e^{td}]^{n-1}e^{(\gamma+\epsilon)t-R^2/t}(4\pi t)^{-l/2}m(K(R,\epsilon))\chi_{K(R,\epsilon)}(x) \\ &\geqslant e^{n(\gamma+\epsilon)t-nR^2/t}(4\pi t)^{-nl/2}m(K(R,\epsilon))^n \chi_{K(R,\epsilon)}(x). \end{split}$$

Thus if $m(K(R, \varepsilon)) \neq 0$, we have $C^{1/n}e^{-t\varepsilon + R^2/t}(4\pi t)^{1/2} \geqslant m(K(R, \varepsilon))$, t>0, by assumption. But it follows by letting $t\to\infty$ that $m(K(R, \varepsilon))=0$. This is a contradiction.

Next consider the case of several operators. For each $j=1, \dots, m$, let A_j be a self-adjoint operator in \mathcal{H} with spectral family $\{E_j(\lambda)\}$. Define the positive and negative parts $A_{j,+}$ and $A_{j,-}$ of A_j as before.

Assume that, for each $j=1,\cdots,m$, $\mathcal{D}(A_{j,+}^{1/2})\subset\mathcal{D}(A_{j+1,-}^{1/2})$, and that there exist constants $\alpha\geqslant 0$ and $0\leqslant \beta<1$ such that

$$||A_{j+1,-}^{1/2}u||^2 \le \alpha ||u||^2 + \beta ||A_{j,+}^{1/2}u||^2, \qquad u \in \mathcal{D}(A_{j,+}^{1/2}),$$
 (9)

where $A_{m+1} = A_1$. Set $\mathcal{D} = \bigcap_{j=1}^m \mathcal{D}(A_{j,+}^{1/2})$. Then the quadratic form

$$u \mapsto \sum_{j=1}^{m} ||A_{j,+}^{1/2}u||^2 - \sum_{j=1}^{m} ||A_{j,-}^{1/2}u||^2, \qquad u \in \mathcal{D},$$
 (10)

is bounded from below and closed. The form $sum A_1 + \cdots + A_m$ of the A_j , $j=1, \cdots, m$, is defined as the self-adjoint operator in the Hilbert space $\overline{\mathcal{D}}$ associated with (10).

We avoid inessential complication and content ourselves with a rather small class of functions which is included in $\mathcal{F}(\tau)$, and which contains the functions (5)–(8).

Theorem 2. Let $0 < \tau \le \infty$. For each $j=1, \dots, m$, let $f_j(t, \lambda)$ be a bounded nonnegative function defined on $[0, \tau) \times R$ of the form

$$f_j(t, \lambda) = k_j(t)\chi_{(-\infty, -\delta)}(t\lambda) + f_j(t\lambda)\chi_{(-\delta, \infty)}(t\lambda), \quad \delta > 0,$$

where (i) each $f_{\beta}(s)$ is a bounded nonnegative and Borel measurable function on $[-\delta, \infty)$ satisfying

 $[1-(\zeta s)^{3/2}]/[1+\zeta s+(\zeta s)^2] \leq f_j(s)^{\zeta} \leq [1+(\zeta s)^{3/2}]/[1+\zeta s+(\zeta s)^2],$ (11) for $s \geq 0$ with $\zeta = 1$, and for $-\delta \leq s < 0$ with all ζ in some common nonempty open interval $I \subset (-\infty, 0)$, and (ii) each $k_j(t)$ is a function on $[0, \tau)$ satisfying $1 \leq k_j(t) \leq f_j(-\delta)$. Assume that there exists a constant z > 1 such that,

 $\beta \sup_{-\delta \leqslant s < 0} s^{-1} (1 - f_{j+1}(s)^{2z}) \leqslant \inf_{s > 0} s^{-1} (f_{j}(s)^{-2} - 1), \quad j = 1, \dots, m, \quad (12)$ where $f_{m+1}(s) = f_{1}(s)$. Then for $u \in \overline{\mathcal{D}}$,

$$[f_m(t/n, A_m) \cdots f_1(t/n, A_1)]^n u \rightarrow \exp[-t(A_1 \dotplus \cdots \dotplus A_m)]u,$$

$$n \rightarrow \infty, \ t \geqslant 0.$$
(13)

The convergence is uniform in $t \in [0, T]$ for every T > 0.

Theorem 2 is somewhat weak compared with Theorem 1. The convergence in (13) for $u \perp \mathcal{D}$ seems to remain unknown (cf. [8]).

2. Proof of theorems. Proof of Theorem 1. We shall use the method of Kato [4, 5] and Simon [5, Addendum] with Vitali's theorem.

For $K \subset R$, let $\mathcal{B}(K, \mathcal{H})$ be the Banach space of all bounded \mathcal{H} -valued functions on K. For $\zeta \in C$, $0 \le t < \tau$ and $\lambda \in R$ put

$$f(\zeta, t, \lambda) = f(t, \lambda)^{\zeta} \chi_{(-\infty,0)}(t\lambda) + f(t, \lambda) \chi_{[0,\infty)}(t\lambda),$$

$$g(\zeta, t, \lambda) = g(t, \lambda)^{\zeta} \chi_{(-\infty,0)}(t\lambda) + g(t, \lambda) \chi_{[0,\infty)}(t\lambda).$$
(14)

Put

$$U(\zeta, t) = f(\zeta, t, A)g(\zeta, t, B).$$

The proof is divided into five steps. Let 0 < T' < T.

I. It is easy to see that if $n > T/\tau$ and $u \in \mathcal{H}$ then $U(\zeta, t/n)^n u$ is holomorphic in ζ as a $\mathcal{B}([0, T], \mathcal{H})$ -valued function.

II. There exist constants C and $\gamma \geqslant 0$ such that, for each n with $n > T/\tau$ and for each ζ with $\operatorname{Re} \zeta < z$, $||U(\zeta, t/n)^n|| \leqslant Ce^{rt}$, $0 \leqslant t \leqslant T$.

To show this, first note $f(\zeta, t, A) = f(\zeta, t, A_+) f(\zeta, t, -A_-)$ with

$$f(\zeta, t, A_+) = E_A((-\infty, 0)) + \int_R f(t, \lambda) \chi_{[0,\infty)}(\lambda) dE_A(\lambda),$$

$$f(\zeta, t, -A_-) = \int_R f(t, \lambda)^{\zeta} \chi_{(-\infty, 0)}(\lambda) dE_A(\lambda) + E_A([0, \infty)),$$

and similarly for $g(\zeta, t, B)$. For $0 < t < \tau$, put

 $M(f, t) = \sup_{\lambda < 0} (t\lambda)^{-1} (1 - f(t, \lambda)^{2z}), \quad M(g, t) = \sup_{\lambda < 0} (t\lambda)^{-1} (1 - g(t, \lambda)^{2z}).$ By the condition (iii) of $\mathcal{F}(\tau)$ and (3), both M(f, t) and M(g, t) are bounded by some constant M and $\beta M(f, t)t\lambda g(t, \lambda)^2 \leqslant 1 - g(t, \lambda)^2, 0 < t < \tau, \lambda \geqslant 0$. Then for $u \in \mathcal{H}$ we have in view of (1)

$$\begin{split} &\|f(\zeta,\,t,\,-A_{-})g(\zeta,\,t,\,B_{+})u\|^{2} \\ &\leqslant \int_{R} [f(t,\,\lambda)^{2z}\chi_{(-\infty,0)}(t\lambda) + \chi_{[0,\infty)}(t\lambda)]d\|E_{A}(\lambda)g(\zeta,\,t,\,B_{+})u\|^{2} \\ &\leqslant \int_{R} [M(f,\,t)t|\lambda|\chi_{(-\infty,0)}(t\lambda) + 1]d\|E_{A}(\lambda)g(\zeta,\,t,\,B_{+})u\|^{2} \\ &= M(f,\,t)t\|A_{-}^{1/2}g(\zeta,\,t,\,B_{+})u\|^{2} + \|g(\zeta,\,t,\,B_{+})u\|^{2} \\ &\leqslant \beta M(f,\,t)t\|B_{+}^{1/2}g(\zeta,\,t,\,B_{+})u\|^{2} + (1+\alpha M(f,\,t)t)\|g(\zeta,\,t,\,B_{+})u\|^{2} \\ &= \int_{R} [(\beta M(f,\,t)t\lambda + 1 + \alpha M(f,\,t)t)g(t,\,\lambda)^{2}\chi_{[0,\infty)}(t\lambda) \\ &\quad + (1+\alpha M(f,\,t)t)\chi_{(-\infty,0)}(t\lambda)]d\|E_{B}(\lambda)u\|^{2} \\ &\leqslant (1+\alpha M(f,\,t)t)\|u\|^{2} \leqslant (1+\alpha Mt)\|u\|^{2} \leqslant e^{\alpha Mt}\|u\|^{2}. \end{split}$$

Thus $||f(\zeta, t, -A_-)g(\zeta, t, B_+)|| \le e^{\alpha Mt/2}$, and similarly

$$\|g(\zeta, t, -B_{-})f(\zeta, t, A_{+})\| \leqslant e^{\alpha Mt/2},$$

for $0 \le t < \tau$. It follows with $\gamma = \alpha M$ and $C = \sup\{g(s, \lambda)^z : 0 \le s < \tau, \lambda \in R\}$ that

$$\begin{split} &\|\,U(\zeta,\,t/n)^n\|\!\leqslant\!\|f(\zeta,\,t/n,\,A_{_+})\|\\ &\cdot[\|\,f(\zeta,\,t/n,\,-A_{_-})g(\zeta,\,t/n,\,B_{_+})\|\,\|g(\zeta,\,t/n,\,-B_{_-})f(\zeta,\,t/n,\,A_{_+})\|]^{n-1}\\ &\cdot\|\,f(\zeta,\,t/n,\,-A_{_-})g(\zeta,\,t/n,\,B_{_+})\|\,\|g(\zeta,\,t/n,\,-B_{_-})\|\!\leqslant\!Ce^{rt},\\ &0\!\leqslant\!t\!\leqslant\!T,\qquad n\!>\!T/\tau. \end{split}$$

III.
$$U(\zeta, t/n)^n \xrightarrow{s} \exp[-t(A_\zeta + B_\zeta)]P$$
, $n \to \infty$, $t > 0$, $\zeta < 0$. (15)

Here the convergence is in the same sense as in the statement of the theorem, and $A_{\zeta} = A_{+} - \zeta A_{-}$, $B_{\zeta} = B_{+} - \zeta B_{-}$.

To show convergence for $u \in \overline{\mathcal{D}}$, by Chernoff's theorem [1, Theorem 1.1], it suffices to prove that $[1+t^{-1}(1-U(\zeta,t))]^{-1} \longrightarrow_{s} [1+(A_{\zeta}+B_{\zeta})]^{-1}P$, $t \downarrow 0$. This, however, can be shown by the same method as in Kato [5] if we note with the conditions (ii) and (iii) of $\mathcal{F}(\tau)$ that

$$0 \leqslant f(\zeta, t, A) \leqslant 1, \quad 0 \leqslant t < \tau,$$

$$[1-f(\zeta,t,A)]^{1/2} \xrightarrow{s} 0, \quad 1-f(\zeta,t,A)^{1/2} \xrightarrow{s} 0, \quad t \downarrow 0,$$

$$t^{-1/2}[1-f(\zeta,t,A)]^{1/2}u \longrightarrow A_{\zeta}^{1/2}u, \quad t \downarrow 0, \quad u \in \mathcal{D}(|A|^{1/2}),$$

and similarly for $g(\zeta, t, B)$. For convergence for $u \perp \mathcal{D}$, the same argument as in Kato [4] is valid.

IV. It can be seen by (1) that, for ζ with Re $\zeta < z$, the family of the quadratic forms

 $u\mapsto \|A_+^{1/2}u\|^2+\|B_+^{1/2}u\|^2-\zeta\|A_-^{1/2}u\|^2-\zeta\|B_-^{1/2}u\|^2,\quad u\in\mathcal{D},$ (16) is holomorphic of type (a) (Kato [7, Chap. 7, § 4]). Therefore for each fixed $t\geqslant 0$ and $u\in\mathcal{H}$, $\exp[-t(A_\zeta\dot{+}B_\zeta)]Pu$ is holomorphic in ζ , $\operatorname{Re}\zeta< z$, where $A_\zeta\dot{+}B_\zeta$ denotes the *m*-sectorial operator in the Hilbert space $\overline{\mathcal{D}}$ associated with (16).

V. It has been seen in I and II that, for each $u \in \overline{\mathcal{D}}$, the functions $U(\zeta, t/n)^n u$ are uniformly bounded and holomorphic in ζ , $\operatorname{Re} \zeta < z$, as $\mathcal{B}([0,T],\mathcal{H})$ -valued functions. And this sequence converges to $\exp[-t(A_{\zeta} + B_{\zeta})]Pu$ as $n \to \infty$ for $\zeta < 0$. Therefore, by virtue of Vitali's theorem, we obtain (15) for all ζ with $\operatorname{Re} \zeta < z$, and in particular, the desired result (4) with $\zeta = 1$ when applied to $u \in \overline{\mathcal{D}}$. For $u \perp \mathcal{D}$, apply Vitali's theorem to the $U(\zeta, t/n)^n u$ as $\mathcal{B}([T', T], \mathcal{H})$ -valued functions.

Proof of Theorem 2. For each $f_j(t,\lambda)$, define $f_j(\zeta,t,\lambda)$ as in (14) and $A_{j,\zeta} = A_{j,+} - \zeta A_{j,-}$. Set $U(\zeta,t) = f_m(\zeta,t,A_m) \cdots f_1(\zeta,t,A_1)$. Then the same arguments as in the proof of Theorem 1 apply to $U(\zeta,t/n)^n u$, with $u \in \overline{\mathcal{D}}$, except for the proof of $U(\zeta,t/n)^n u \rightarrow e^{-tC\zeta}u$, $n \rightarrow \infty$, t > 0, $\zeta \in I$. Here $C_{\zeta} = A_{1,\zeta} \dotplus \cdots \dotplus A_{m,\zeta}$. To show this, put for each fixed $x \in \mathcal{H}$, $y_0(t) = [1 + t^{-1}(1 - U(\zeta,t))]^{-1}x$, $y_j(t) = f_j(\zeta,t,A_j)y_{j-1}(t)$, $0 < t < \tau$, $j = 1, \dots, m$. In view of Chernoff's theorem, we have only to show that $y_0(t) \rightarrow [1 + C_{\zeta}]^{-1}Px$, $t \downarrow 0$. Here P denotes the orthogonal projection of \mathcal{H} onto $\overline{\mathcal{D}}$. We shall use the method in Kato-Masuda [8].

Since $||y_j(t)|| \le ||x||$ for $0 < t < \tau$, there exists a sequence $t_{\nu} \downarrow 0$ and $y_0^* \in \mathcal{H}$ such that $y_j(t_{\nu}) \xrightarrow{w} y_0^*$, $\nu \to \infty$. Put $\Phi_{j,\zeta}(v) = 2^{-1} ||A_{j,\zeta}^{1/2}v||^2$ if $v \in \mathcal{D}(|A_j|^{1/2})$ and $= \infty$ otherwise. Put

$$\Phi_{j,\zeta}(t\,;\,v) = 2^{-1} \|(A_{j,+} + \zeta A_j E_j([-\delta/t,\,0)))^{1/2} v\|^2$$

if $v \in \mathcal{D}(A_{j,+}^{1/2})$ and $=\infty$ otherwise. Then (11) yields, for $\zeta \in I$ and $v \in \mathcal{H}$,

$$\sum_{j=1}^{m} \Phi_{j,\zeta}(v) \geqslant \sum_{j=1}^{m} \Phi_{j,\zeta}(t_{\nu}; y_{j}(t_{\nu})) + \operatorname{Re}(v - y_{0}(t_{\nu}), x - y_{0}(t_{\nu})) + 2^{-1}t_{\nu} \|x - y_{0}(t_{\nu})\|^{2}.$$
(17)

Each $\Phi_{j,\zeta}(t;y)$ is weakly lower semicontinuous in y and monotone decreasing in t, so that $\limsup_{\nu\to\infty}\Phi_{j,\zeta}(t_{\nu};y_{\jmath}(t_{\nu}))\geqslant \sup_{t>0}\limsup_{t>0}\Phi_{j,\zeta}(t;y_{\jmath}($

$$\sum_{j=1}^{m} \Phi_{j,\zeta}(v) \geqslant \sum_{j=1}^{m} \Phi_{j,\zeta}(y_{0}^{*}) + \text{Re}(v - y_{0}^{*}, x - y_{0}^{*}).$$

This proves $y_0(t) \xrightarrow{w} y_0^* = [1 + C_{\xi}]^{-1} Px$, $t \downarrow 0$. Hence $y_0^* \in \mathcal{D}$. Strong

convergence will also be proved as in [8].

3. Applications. Let V(x) be a real-valued measurable function on R^i . Set $V_+(x)=\max\{V(x),0\}$ and $V_-(x)=\max\{-V(x),0\}$. The following facts are direct consequences of Theorem 1, although it can also be shown by the very Trotter product formula proved in Kato [5] plus the Trotter-Kato theorem [7, Chap. 9, § 2]: 1° Assume that $H^i(R^i)\cap \mathcal{D}(V_+^{i/2})$ is dense in $L^2(R^i)$ and V_- is form-bounded with respect to $-\Delta$ with relative bound <1 (For such V, see e.g. Faris [2]). Then $e^{-((-\Delta)^{\frac{1}{2}}V)}$ is positivity preserving. In fact, the approximants in (4) with $A=-\Delta$, B=V and the functions (5) as f, g are all positivity preserving. 2° Let B be the same self-adjoint realization of the formal Schrödinger operator $T=-(V-ib(x))^2$ as in Kato [6]. Assume that $V_+\in L^1_{loc}(R^i)$ and V_- is form-bounded with respect to both $-\Delta$ and B with relative bounds <1. Then B obeys pointwise domination $|e^{-t(B^{\frac{1}{2}}V)}v| \leq e^{-t[(-\Delta)^{\frac{1}{2}}(-V-1)]}|v|$, a.e. on R^i , $t\geqslant 0$, for $v\in L^2(R^i)$.

References

- [1] Chernoff, P. R.: Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators. Mem. Amer. Math. Soc., 140 (1974).
- [2] Faris, W. G.: The product formula for semigroups defined by Friedrichs extensions. Pacific J. Math., 22, 47-70 (1967).
- [3] Ichinose, T.: A product formula and its application to the Schrödinger equation. Publ. RIMS, Kyoto Univ., 16, 585-600 (1980).
- [4] Kato, T.: On the Trotter-Lie product formula. Proc. Japan Acad., 50, 694-698 (1974).
- [5] —: Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups. Advances in Math. Supplementary Studies, 3, 185-195 (1978).
- [6] —: Remarks on Schrödinger operators with vector potentials. Integral Equations and Operator Theory, 1, 103-113 (1978).
- [7] —: Perturbation Theory for Linear Operators (2nd ed.). Springer-Verlag, Berlin-Heidelberg-New York (1976).
- [8] Kato, T., and Masuda, K.: Trotter's product formula for nonlinear semigroups generated by the subdifferentials of convex functionals. J. Math. Soc. Japan, 30, 169-177 (1978).