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19. The Stokes Operator in L Spaces

By Yoshikazu GIGA
Department of Mathematics, University of Tokyo

(Communicated by K6saku YOSDA, M.J.A., Feb. 12, 1981)

Introduction. In this paper we shall report that the Stokes
operator generates a bounded analytic semigroup of class Co in L
spaces. Moreover, we shall decide domains of fractional powers of
the Stokes operator. To show these we shall construct the resolvent
of the Stokes operator, using pseudodifferential operators.

Let D be a bounded domain in R with the smooth boundary S.
Let 1<r< oo and let X be the closure in (L(D)) of all smooth sole-
noidal vector fields with compact supports in D. Then there exists
the continuous projection P from L(D)-(L(D)) onto X see Fuji-
wara-Morimoto [5]. We denote by W(D) the Sobolev space of order
m. Set W(D)--(WT(D)). Then we define the Stokes operator by
A PA (A-- ,-b. -kx) whose domain is

D(Ar) {w e W(D) X w[- 0}.
Let e0, _>_0 and let 27,. denote the set of e C such that ]arg
[[. Then we have

Theorem 1. For any eO there exists a constant C,,r independent
of f e Xr and of 2 e ,o such that

where denotes the norm of L(D). Consequently, -A generates
a bounded analytic semigroup of class Co in X.

Remark. This result is partially known by Solonnikov [14]; he
proved (1) for larg 21_<_/+/2, where >__0 is small. Our result is new
in the following two points"

i) We prove that the estimate (1) holds for larger domain of
that is, e X,0 for any positive .

ii) We construct the resolvent (+A,)- explicitly. This enables
us to describe the domain of fraztional power A of A. For the case
of the Laplace operator the corresponding result is well known; see
Fujiwar [4] and Seeley [12].

By Theorem 1 we can define A. Concerning A we have

Theorem 2. For any0 there exists a constant M,r independ-
ent of f e Xr, -la<0, b e R such that

This implies, like Kato [6],
( 2 ) D(A) [X, D(A)],, 0<a< 1,
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where [, denotes the complex interpolation of two Banach spaces.
Let B= --A with D(B)= {w e W(D): w]--0}. Then, by (2) we have

Theorem . D(A) X. D(B.) 0 ot 1.
This generalizes the result in Fujita-Morimoto [3]; they proved

Theorem 3 when r--2.
Theorems 1 and 3 are useful in treating the initial value problem

for the Navier-Stokes equations; see Sobolevskii [13], Fujita-Kato [2],
Kato-Fujita [7], Solonnikov [14], Miyakawa [10].

1. The resolvent of the Stokes operator. To show Theorems
1 and 2 it is essential to construct the resolvent (+A)-. We can
transform the equation (2/A)u--f in X into the following Stokes
equations"

(2--A)U+Vp=f in D,
(S) divu=O in D,

u]=0 on S,
where p is some scalar function. Since f determines u, we denote u
by u=Gf. When 2=0, Odqvist [11] constructed the kernel functions
of Go; see, for the details, Ladyzhenskaya [9] and the papers cited
there.

To construct the resolvent G we use the potential theoretical dis-
cussions. Set

where 3 denotes Kronecker’s delta and I1=+ +. Identify f
with its extension to R which vanishes outside D. Then we define
the hydrodynamic potential of f by

(Kf)(x) (-kf)(x),
where denotes the Fourier transformation with respect to x. We
can easily see that the volume potential u’=Kf satisfies the equations

(K)
(2--A)u’+ Vp’=f in R,

div u’= 0 in
where p’ is some scalar function on Rn. Let z=No satisfy

Az=0 in D,
(N) z[, s= on S, zz(x)dx=O’
where , denotes the unit interior normal vector to S at x e S. Let
(, } be the standard inner product in Rn. Let :,(S) be the set of
g e W(S) satisfying (g, ,}=0. Let v=Vg be the solution of the
equations

(2--A)v+Vq=O in D,

(T)
divv=0 in D,
v]--ge,(S) on S,

(v],}=0 on S,
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where q is some scalar function; we call this problem (T) the Dirichlet
problem with tangential data. Set

Mf gf 7VN(v, gf),
where sw=w[s. Then, by the definition of N we have (Mf,
By (S), (K), (N), (T) we can easily prove

Proposition 1. Gf=Kf--VN@, ysKf}--VMf
This procedure is found in Fabes-Lewis-Riviere [1]. Our next

problem is to constract V.
2. Pseudodifferential operators. In order to construct V, we

introduce a symbol class of pseudodifferential operators with a para-
meter .

Definition. Let m and k be real numbers. Then we denote by
S;(R) the set of all p e C(RnXRn) (2 e C\(--oo, 0]) such that for all
multi-indices ,/ and positive numbers ,,

C,a .... =sup[<$>t’-<2 $>-lS8p(x, )1" (x, ) e R XR
is finite; here <; > denotes (12]+l[2-+-1)’/2 and <}=<0; >.

Example. Let k() be as in (3). Let 9(s) e C({s>_0}) satisfy

[ 0" 0_<_s_<_l
9(s) 1" 2<_s

Set q()=9(ll). Then we get +k()e S;-(R0.
When a linear operator P" -+3 has the expression

(Pw)(x)-- 1 e’(x, )(Fw)()d, w e 3
(27)

with p(x, )e S;(Rn), we call P a pseudodifferential operator with
its total symbol a(P)=p(x, ). Let Q be another pseudodifferential
operator with the total symbol q e S’;’(Rn). Then, like usual theory
of pseudodifferential operators, PQ is again a pseudodifferential
operator with its total symbol a(PQ)e S/’;/’(R). However, to
separate the part of the highest order in a(PQ) with respect to we
need additional assumptions on p.

Proposition 2. Suppose that 3,p belongs to S;"(Rn)(M’<k) for
all ] (l_<__]gn). Then we have

a(PQ)=pq+r with r e S/’;’/"(Rn).
3. The Dirichlet problem with tangential data. Let {U,} be a

finite open covering of S which consists of local coordinates neighbour-
hoods of S; we denote by F,,0 the diffeomorphism from the closed unit
ball B={(z’, 0)e Rn-R Iz’[__<__l} onto U,. Let {,} be a partition of
unity subordinate to {U,}. Let Y be an n n matrix of pseudodiffer-
ential operators on Rn- satisfying to conditions"

S0;,(Rn-1),(Y1) a(Y])(z’, ’) y(z ’) e
(Y2) y] vanishes outside a compact set in B.

Define the operator F0 by (Fof)(z’)=f(F,,o(Z’)), for any f e C(U,).
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Then we set Y*=F5* YF0 and
(Yw)(x)- (Y]* )w)(x), w e (_q)’(S)).

We say that a bounded linear transformation P in (S) (for all
s e R) belongs to class S(k) if the estimate

is valid or some constant K:.... Roughly speaking, the class S(k)
contains the space o pseudodifferential operators whose total symbols
belong to S;; recall L boundedness theorem o pseudodifferential
operators (cf. Kumano-go and Nagase [8]).

To construct Vg we compute

modulo S(- 1). Let F be a mapping defined on B, B X [--, Z] (Z>0)
such that F.(z’, z) x+zr, x=F.o(Z’). Then F is a diffeomorphism
from B, onto 0=F.(B,) for small Z, where O. is open in R. Let be
a pseudodifferential operator with a()()=+(), where + is defined in
the previous example. Let 8, w e C(O) satisfy Ow= and
on B, where =Fw.. Then we set, -I,Z F OKF .
Let P be a pseudodifferential operator with a(P) e S;(R). Then we
denote the single layer potential by

(P,w)(z’)=(P((y)@w(y’)))(z), w e G’(R-l).
Set T]=Z],oY. Then we can localize the operator T.

Proposition T -** S( 1).

Next we study a(T]).
Proposition 4. Se$

x(z,’)= (+k)(d:F[l)]=o d,

where dF denotes the Jacobi matrix of F at z. Then we have
So;-(R-,).a(Z].o)(Z’ ’) x;(z ’) e

Moreover, we have 3:gx e S;-(R-) for all ] (lg]gn--1).
By (Y1) and Proposition 2 we have
Proposition 5. a(T) xy mod. S; -(Rn-).
Let = be the projection such that =w=<r, w>,. Then, using

Propositions 3 and 5, we can prove

Proposition 6. We can choose y] so that
T=(I--=J(I+J) mod. S(- 1),

where J has a smooth kernel. In particular,
<,, T;. > e S(-).

We can take sucient fine covering {U} so that
1Jw](s)g]w](s) for all w e Lr(S).
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Now we construct V. We consider
Wg-- K(Ss(R) Yg)--VN (v, Tg,

which satisfies (T) except the boundary condition sv--g. Set Sg
-Wg. Then it is clear that (Sg, -0. Take y] as in Proposition
6. Then we have

Theorem 4. The bounded linear operator
s w,(s) w,(s)

has the form
S=I+(I-)J mod. S(- 1).

This implies S has the inverse i ]2] is large, so we have
Proposition 7. Vg-WS;lg if [2[ is large.
By Propositions I and 7 we get
Theorem 5. Gf=Kf--VN@, sKf)-WS;1Mf if 12l is large.
From this Theorem we can derive Theorems 1 and 2 (cf. Seeley

[12]); we shall give the detailed proof elsewhere.
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