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1. Let (X(t):t>=O, P) be the Brownian motion in R starting
from X(0)=0. We give an asymptotic formula for the quantity

(1) J(t): J(t; ):E[exp(-- ;R{1-exp(--: (X(a)--y)d))dy)]
as t-+oo, where E denotes the expectation with respect to P, 9 a non-
negative Borel function on R* and v>0 a constant. Asymptotic be-
havior of J(t) has been investigated in connection with the study of
the spectral distributions of the SchrSdinger operators --1/2+q(x)
with random potentials of the form q(x)= 9(x--), where {} is the
support of the Poisson random measure with intensity v>0 (see [2]-
[7]).

Donsker and Varadhan [2] proved that if 9(x)=o(1/lxl+)([xl)
and [ 9(x)dx>O, then

( 2 ) lim t-/< ) log J(t)=

exists and

( 3 ) k(,)=,v(+) d+(2l/d)/(+),
2

where 2 is the smallest eigenvalue 2or --1/2A in a sphere o2 unit
volume with zero boundary condition. On the other hand, Pastur [7]
proved that if (x)K/x+(x]), where K0 and 0fl2, then
( 4 ) lim t-/+) log J(t)= -(v, fl, K)

exists and

(5) (,, fl,
d+/

where 9 is the volume o a sphere o unit radius. The 2ollowing
theorem covers the critical case of (x)K/x+(x).

Theorem 1. Let (X(t), tO) be the d-dimensional Brownian
motion with X(O)=O. Suppose is a non-negative bounded Borel

function of R such that (x)K/x+(]x), where KO. Define
J(t) by (1). Then for any
( 6 ) lira t-/(+ log J(t)=-C(,, K)

t

exists and C(,, K)--ine0 [I(f)+(f)], where
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I1 dx,( 7 ) I(f)=-
f(x)dx(f)= {1-exp(--Ka

and 0 (f e f has a bounded support and I(f) }.
Here denotes the set of all probability density functions on R

and denotes the usual gradient vector in the distribution sense.
Remarks. (i) Theorem 1 is still valid if K/[x]+ is replaced

by any w(x)0 which is homogeneous of degree --(d+2), i.e., w(2x)
=w(x)/2+, 20, and continuous in x#0.

(ii) Furthermore, if the Brownian motion is replaced by a d-
dimensional symmetric stable process o index a (0a2), then
Theorem I holds with d+2 and I(f) replaced by d+a and

=2-.[ dx.[ [f(x+y)-f(x)[n(dy), respectively, where n(dy) is the

L4vy measure o the stable process.
We next give some information as to how C(,, K) in Theorem 1

depends on K and, and how it is related to k(,) in (3) and (,, 2, K)
in (5). In the following we write (,, K) for (,, 2, K).

Theorem 2. ( ) C(,, K) is strictly increasing, concave and con-
tinuous both in KO and in 0.

(ii) C(,, K)>max (k(,), (,, K)}.
(iii) C(,, K) k(,) as K 0 and C(,, K)(,, K) as K .
(iv) C(,, K) k(,) as $ 0 and C(,, K)(,, K) as .
The proo o Theorem 1 will be given in 2 and 3 and the proof

of Theorem 2 will be given in 4.
2. Proof of Theorem 1 (upper bound). In this section we prove

( 8 lim t-/(+) log J(t; )-C(, K).
t

Let -p, (convolution), where p e . We first prove
( 9 lira t-/(+) log J(t; )-C(,, K).

To prove (9) we will use the argument similar to that of te upper
bound in [2]. In particular, we appeal to the Donsker-Varadhan
large deviation theorem for the Brownian motion on a torus ([1]).
Let M)0 be given. Let T be a d-dimensional torus of size M and let
G={(Mn,..., Mn)" n e Z, i=1, ..., d} so that T=R/G. We think
of T as [0, M]R with the sides identified. Let be the set of all
probability density functions on T, but periodically extended to the
whole space R. For g e let

g(x)dx 1(g):"r (1--exp(--KI ]:))dy and I(g):
if the right hand side makes sense, otherwise I(g)=.
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Lemma 2.1. Le (x)=p.(x)=| p(x-y)(y)dy with p e..
JR

Then
(10) lira t-/(/) log J(t )-- inf [I(g)+q(g)].

fiM
Proof. For any0 define ks e by k,(x)=reo p(x+y), x e R,

where p(x)---p(e-x). Moreover, for any trajectory w=x(.) on

T and any 0 define g(w, .) e by g(, y)=r- [i k()(x(a)--y)da,
y e R, where e(r)=r-/. Let X(t), tO be a trajectory in R with
X(0)=0. Define, for each s0, a new trajectory X(.) by X(t)
=s-X(st). Let " R-T be the canonical projection. Set r=r(t)
=t/+2) and s=s(r)=rl/(=tl//)). By change of variables and using
the argument in [2, p. 562], we have for the given +=p.9

exp { f {X exp( o (X() Y) d)}dy}
exp{-- rCf(g(w, ))} (w (X( ))),

where (g)=, ;r {1--exp(-; 9(x-y)g(x)dx)}dy, ge and 9(z)

r( )/ 9(r/%). Since the laws o X( and X(. ) are identical, we have
(11) J(t )<=E[exp{--r(g((X(. )), .))}]
Since 9(z)-K/Izl/ as r--oo, we can check by using Fatou’s lemma
twice that i g, g e satisfy g-.g in L(T, dx) as r--oo, then lim (g)
>=O(g). Thus it follows rom Corollary to Theorem 5.1 of [1] that

(12) lin __1 log E[exp{--rq(g((X(. )), ))}] <_ inf [I(g)+(g)].
T efiM

Combining (12) with (11), we have (10). Q.E.D.
To establish (9) we have only to prove the following lemma since

M>0 is arbitrary.

Lemma 2.2. sup inf [I(g)+(g)]>=C(,, K).
M>0

This is the analogue of Lemma 3.5 of [2] and can be proved simi-
larly with a slight modification. We omit the proof.

The ollowing lemma reduces (8) to (9).
Lemma 2.3. For each 0al there is a (x)=O with the prop-

erty that (x)aK/Ix]+(Ixl-oo) and a pe such that (x)--p.(x)
<=(x) for all x e R.

Proof. Let (x)=aK/[xl+ if Ixl>=R, (x)=O otherwise and let
pe satisfy {p>0}c{Ixl<a}. Then one can check that p. or
large R>0 and small >0. Q.E.D.

It ollows rom (9) that or in Lemma 2.3
lim t-/( ) log J(t (k) <= C(,, aK).
t--

Since J(t; 9)=<J(t; ), we have (8) with aK replacing K. Letting
a $1, we have (8) by Theorem 2 (i).
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3. Proof of Theorem 1 (lower bound). In this section we prove
(13) lim t-/(/) log J(t)=-C(,, K).

By the inequality due to Pastur [7] (see also [4], [5]) we have
(14) J(t)ll/-fll2ll/-flI; exp{--[tI(f)+t(f)]}, f e o,

[ l-exp(-$.[(x-y)f(x)dx)dy, ..u,:ess. supwhere

and llull=[ luld, Defineft e 0, ,>0 by ft(x)=t-/+2’f(t-v’*+>x) for

any bounded f e o and substitute f for f in (14). Then, by change
of variables, we have

J(t) ll=111 4] : exp{-- t/(+) [I(f) + ,(f)]},
where #,(f)= .[{1-exp(-.[ tg(t’/(+)(x y))f(x)dx)}dy, and hence

lim t-/( ) log J(t) [I(f) + lim #,(f)].

Note that there is an A>0 such that 9(x) All x +, x e R since 9 is
bounded. Thus we can prove lira #(f)#(f) by using the Lebesgue-
Fatou theorem twice. Hence we have
(15) lim t-/( ) log J(t) [I(f) + #(f)]

for any bounded f e 0. It is easy to see by a truncation argument
that (15) holds for any f 0, proving (13).

4. Proo{ og Theorem 2. The first assertion follows from the
definition of C(v, K) and (iii), (iv). Define #(f; a) for a>0 by #(f) in
(7) with aK replacing K and define C(a, v, K)= inf [aI(f)+ #(f)] (f e 0)
for a>0. Noting that I(f,)=R-2I(f), #(f,)=R#(f;1/R+), where
f,(x)=R-f(R-x), R>O, we have
(16) C(v, K)=v/(+) C(1, K)=vK/(+) C(v-K- 1 1)
Thus Theorem 2 follows from the following

Lemma 4.1. ( ) C(1, K) { inf[I(f)+l{f>O}]=k(1) as K $ O.

(ii) C(a, 1, 1) ; {1-exp(-1/Igl*9}dg=(1, 1) a a ; 0.

Here A denotes the Lebesgue measure of the se A.
Proof. Nqualities in (i) and (ii) are known ([2], [7]). Since

(g (i isC(1, K) inf [I(f)+l{U= }ll (g 0), where U(V)= a

consequence of the fact that U()= if and only if f(g)>0 a.e. for

each f 0. "If" art follows from U(g)f-- [ f(+g)g since
Ixl<r

r-a ] f(x+y)dxconst. X f(y) a.e. (r 0) by the Lebesgue theorem
Jxl<r

(see [8, I]). "Only if" part follows rom
U(y)dy< dy IJf(y+x)+Jf( x)-2X(y)

const. I(f)<
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(see [8, VIII 5.2] or the eciuality). It is easy to see that C(a, 1, 1)
$ in(f) (a $ 0) with ,--K=I. We have (f)__>(1, 1) by Jensen’s
inequality, while we can chovsef e 0 such that (f)(1, 1), proving
(ii). Q.E.D.
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