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In utilizing the V-quadruple defined in our Note I”, we shall give
an algorithm to determine the type of decomposition of a rational
prime in a cubic field.

Let p be a given prime, « an integer of the cubic field K such that
K=Q(x) and f(X) the minimal polynomial of «. If p does not divide
the index (O : Z[«l), then the type of decomposition of p in K is de-
termined by the type of decomposition of f(X) mod. p in irreducible
polynomials mod. p by a classical theorem.

Now if [1,«, 8] is a V-basis of O, and ¢[1, «, f1=(a, b, ¢, d), then
we have |a|= (O : Z[a]) because «*= —ac—ba—ap.

Let us first settle the case where K has inessential discriminant
divisor and p=2. The only possible inessential discriminant divisor
of a cubic field is 2, and it is known that K has such a divisor if and
only if a=d=0, b=c=1 (mod. 2) where (a, b, ¢, d) is, as above, ¢[1, @, ]
for a V-basis [1, «, f] of O,. Furthermore, it is also known that 2 is
decomposed in K in the form (2) =,p,p;, with p,=(2, a+1), p,=(2, -+ 1),
P:=@2, a+p) (cf. [2], p. 120).

The following theorem assures that all other cases can be treated
by the classical theorem cited above.

Theorem 4. Let p be an odd prime and K be any cubic field, or
else let p be any prime and K be a cubic field without inessential dis-
criminant divisor. Then O, has o V-basis [1,«, ] such that ¢[1,«, gl
=(a, b, ¢, d) with pta.

Proof. Let [1,«, ] be a V-basis of O, and put ¢[1, «, f1=(a, b, c,
d). If pfe, then we are done. If p|a, then consider (e, b,,c,, d,)
=(a, b, ¢, d)A'B where A, B are 4 X4 matrices given in I. We have

a_,=—a+b—c-td,
ay=d,
a,=a-+b+c+d.

If p is odd and a_,, a,, a, are all divisible by p, then a, b, ¢, d are
also divisible by p contrary to Theorem 2. So pta, for i=—1,0 or
1, and for (a,, b,, ¢;, d,) we have a V-basis [1, «,, 8,] of O, with ¢[1, «,,
ﬁi]z(ai’ bi’ Ciy di)'

In case p=2, we can prove in the same way if K has no inessential
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discriminant divisor, as in this case a=d=0, b=c=1 (mod. 2) does not
hold.

Now we have the following

Theorem 5. Let p be a prime and K a cubic field. Let [1,«, ]
be a V-basis of Oy, and ¢l1,a,pl=(a,b,c,d). Suppose pfa. We
shall write I={ie Z; 0<i<p—1} and put 1,1, m,n)=>1,b, ac, a*d)A*
for ieI. (I may be replaced, by the way, by any full system of re-
presentants mod. p.) The decomposition of p into a product of prime
ideals of K is obtained as follows. (All the congruences in the follow-
ing are meant mod. p.)

@) If 7,0 for every i eI, then (p)=%P, deg L=3.

@) If n,=0 for only one te I (i.e. n, =0 for all '=1, v € 1), then
we are in one of the two cases:

@2.1) If m;#0, then (0)=pq where p=®, a—1), 9=, ’+(b+Da
+ac+bi+i), deg p=1, deg g=2.

2.2) If m,;=0, then ,=0 and (p)=p* where p= (D, a—1), deg p=1.

@B If n,=n,=0 for ¢, jel, i+], then we are in one of the two
cases :

3.1 If m;=#=0, m,=0, then there exists k € I, k+1, k7 such that
1, =0, and (P)=ppps where p,=(p, a—1), p=@, a—7), =, a—k),
deg p,=deg p,=deg p,=1.

3.2) If m,=0, then m,=0, 1,0, n,=0 for any kel, k+1, ] and.
(p)=p12p2 where plz(p’ CY-—?:), Pz=(?0, Ol—j), deg P1=deg P2=1-

This theorem follows easily from the following

Lemma. If F(X)=X*+IX*4+mX+n, l,m,ne Z is a cubic irre-
ducible polynomial, then putting (1,1, m,, n)=@Q,1, m,n)A*, we have
FX)=X -+ 1(X =)+ m(X —D)+n,

@A) If n,%0 for all i e I, then F(X) is irreducible mod. p.

Q) If n,=0, m;#0, then F(X)=(X—)F(X) where F(X)=(X—1)
+lL(X—-D+m,.

B If n,=m,=0, 1,0, then F(X)=X—-9)F,(X) where F,(X)
=X—-0+1,.

@ If n,=m,=1,=0, then F( X)=(X—1)’.

Example 1. We take the same field as in 1.

K=Q(x) where « is a root of X*+3X+38=0. O, has a V-basis
[1, «, Bl with ¢[1,a,81=(@1,0,3,3), and (Ok: Z[a])=1. We obtain the
decomposition of primes p, 2<p<13 into products of prime ideals of
K, observing Table (a) below, as follows:

(2)=prime (1,=8z0, n,=T7=0 (mod. 2));

@B)=p% p=(8, @) n,=3=0, my=3=0, [,=0=0 (mod. 3));

(5)=prime (n,=8%0, n,=7=%0, n,=17%£0, n,=39=0, n,=T79%0
(mod. 5));
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(7)=pq: p=(79 0‘_1), Cl=(7, a2+a'+4) (’I’L1=7EO, n0=3$0, n2=17
#=0, 1,=389=%0, n,=n_,=—33%0, n,=n_,=—11%£0, n,=n_,=—1z£0,
m,;=6z0 (mod. 7)) ;

AD=p.pehs, p;=(A1, @+3), p,=(11, a+2), p=(11, a—5) (n,=n_,
=-383=0, n,=n_,= —11=0, n,=143=0 (mod. 11));

A3)=p,*p,, p, =018, a—5), p,=13,®x—3) (n,=143=0, m;=T78=0,
1,=39=0 (mod. 13)).

Table (a) Table (b)
1 1, U, m,, ;) 1 1, L, m, ;)
-3 (@1, -9, 30, —33) -3 @1, -9, 33 -=37)
-2 @1, —6, 15, —11) -2 (1, —6, 18, —12)
-1 -3 6, -1 -1/@@, -3, 9, 1)
a o, 3, 3) 0, (@, o, 6, 8)

a 3, 6 T
a, 6, 15, 17
1, 9, 30, 39)
1, 12, 51, 79)
(1, 15, 78, 143)

1, 3, 9, 15)
a, 6, 18, 28)
(1, 9, 33, 53)

Uk WO
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Example 2. K=Q(x) where «is a root of X*+6X-+8=0. O, has
a V-basis [1, &, ] with ¢[1, a, 1=(2, 0, 3,2), and (O : Z[e])=2. K has
no inessential disecriminant divisor.

If p+#2, we have the decomposition of p observing (1,0, 6, 8)4°,
0<i<p—1. Table (b) shows that:

@=p% p=@, a—1) (n,=m,=1,=0 (mod. 3));

(5)=pq’ P=(5, 05_1), q=(5y a’+a+2) (nIEO’ ni-r:éoa i=—1,0, 29 3,
m,; =0 (mod. 5));

(7)=pq, p= (7’ 0(—’2), Cl=(7, a2+2a+3) (nZEO, niE‘EOs 1= _3; '_2,
_ly 0’ 1) 3’ m2$0 (mOd- 7))-

For p=2, we form (7,9, 6,2)=(2, 0, 3, 2)4B to obtain o ¢ O, with
oll,a, p1=(7,9,6,2), so that 2/(O: Z[a']). (See the proof of
Theorem 4.) o' is a root of X*4+9X°442X4+98=0. By observing
1,9,42,98), and (1, 12,63, 150)=(1, 9, 42, 98) 4, we have

(2)= p12p2’ p= (2, C(,), P= (2, o — 1)-
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