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66. On Vorono’s Theory of Cubic Fields. II

By Masao ARAI
Gakushuin Girls’ High School

(Communicated by Shokichi IYAN2GA, M. . ),., May 12, 1981)

In utilizing the V-quadruple defined in our Note I), we shall give
an algorithm to determine the type of decomposition of a rational
prime in a cubic field.

Let p be a given prime, a an integer of the cubic field K such that
K=Q(a) and f(X) the minimal polynomial of a. If p does not divide
the index (0’ Z[a]), then the type of decomposition of p in K is de-
termined by the type of decomposition of f(X)mod, p in irreducible
polynomials mod. p by a classical theorem.

Now if [1, , ] is a V-bsis of O and [1, c, ]=(a, b, c, d), then
we have ]al=(O" Z[]) because =-ac-b-afl.

Let us first settle the case where K has inessential discriminant
divisor and p=2. The only possible inessential discriminant divisor
of cubic field is 2, and it is known that K has such a divisor if and
only if a--d----O, b--c=l (mod. 2) where (a, b, c, d) is, as above, f[1, ,
for a V-basis [1, a, fl] of 0. Furthermore, it is also known that 2 is
decomposed in K in the form (2) pp.p, with p (2, a+ 1), p= (2, + 1),
p= (2, c+) (cf. [2], p. 120).

The following theorem assures that all other cases can be treated
by the classical theorem cited above.

Theorem 4. Let p be an odd prime and K be any cubic field, or
else let p be any prime and, K be a cubic field without inessential dis-
criminant divisor. Then OK has a V-basis [1, a, fl] such that [1, c,

(a, b, c, d) with pXa.
Proof. Let [1, c, fl] be a V-basis of O and put [1, c, fl]=(a, b, c,

d). If pXa, then we are done. If p a, then consider (a, b, c, d)
=(a, b, c, d)AB where 1, B are 4 4 matrices given in I. We have

a_l= -a+b-c+d,
ao-- d,
a=a+b+.c+d..

If p is odd and a_, a0, a are all divisible by p, then a, b, c, d are
also divisible by p contrary to Theorem 2. So pXa, or i=-1, 0 or
1, and or (a, b,, c,, d,) we have a V-basis [1, a,, fl,] o O with [1, a,,
fl] (a, b, c, d).

In case p 2, we can prove in .the same way if K has no inessential
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discriminant divisor, as in thi.s case a=_d=_O, b=c--1 (mod. 2) does not
hold.

Now we have the 2ollowing

Theorem . Let p be a prime and K a cubic field. Let [1, a,]
be a V-basis of 0, and [1, a, ]= (a, b, c, d). Suppose pXa. We
shall write I {i e Z 0

_
i_p- 1} and put (1, l, m, n) (1, b, ac, ad)A

for i e I. (I may be replaced, by the way, by any full system o2 re-
presentants rood. p.) The decomp.osition of p into a product of prime
ideals of K is obtained as follows. (All the congruences in the ollow-
ing are meant rood. p.)

(1) If nO for every i e I, then (p)=, deg =3.
(2) If n=_O for only one i e I (i.e. n,O for all i’i, i’ e I), then

we are in one of the two cases"

(2.1) If mO, then (p)=pq where p=(p, a-i), q=(p, a+(b+i)a
+ac+bi+i), degp=l, deg q=2.

(2.2) If m--O, then l--O and (p)=_p where p=(p, a-i), deg p= 1.
(3) If nn=_-O for i, ] e I, i:/:], then we ae in one of the two

c(8e8"

(3.1) If mO, mO, then there exists k e I, k=i, k=/=] such that
n=_O, and (p)=ppp where p=(p, -i), p=(p, -]), p=(p, -k),
deg p deg p=deg p= 1.

(3.2) If m=0, then mO, lO, nO for any k e I, k=i, ] and.
(p)=pp where p=(p, -i), p=(p, a-i), deg p=deg p=l.

This theorem ollows easily rom the following

Lemma. If F(X) X +1X+reX+n, l, m, n e Z is a cubic irre-
ducible polynomial, then putting (1, l, m, n)= (1, l, m, n)A, we have
F(X) (X- i) + l(X-- i) +m(X-i)+n.

(1) If ntO far all i e I, then F(X) is irreducible mod. p.
(2) If n=_O, mO, then F(X)--(X-i)F(X) where F(X)=(X-i)

+l(X- i)+m.
(3) If n=_mO, ltO, then F(X)----(X-i)F(X) where F(X)

(X-i)+ l.
(4) If n----m=_ l =_ 0, then F(X) =_ (X-i).
txample 1. We take the same field as in I.
K= Q(a) where a is a root o X+3X/3 0. O has a V-basis

[1, , ] with [1, a,/]=(1, 0, 3, 3), and (O" Z[a])= 1. We obtain the
decomposition of primes p, 2_p_13 into products of prime ideals of
K, observing Table () below, as follows"

(2)-- prime (no 3a0, n--7 0 (mod. 2))
(3)=p, p=(3,a) (n0=30, m0=3----0, lo=O--O (mod. 3));
(5)=prime (n0=30, n=7a0, n=170, n=390, n=79a0

(mod. 5));
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(7)=pq, p=(7, a--1), q=(7, a+c+4) (n=7=0, n0=30, n=17
0, n3=390, n4n_3----330, n=n_2----ll0, n----n_l=--l0,

6 0 (mod. 7))
(11)=pp.p, p=(11, a+3), p.=(11, a+2), =(11, a--5) (ns--n_

--33--0, n--n_=--11=0, n= 143----0 (mod. 11));
(13)=pp, p---(13, a-5), p=(13, a- 3) (n--143-- 0, m--78=0,

n=39=_0 (mod. 13)).

--3
--2
-1
0
1
2
3
4
5

Table (a)

(1, l, m, n) i

(1, --9, 30, --33)
(1, --6, 15, --11)
(1, --3, 6,
(1, 0, 3,
(1, 3, 6,
(1, 6, 15,
(1, 9, 30,
(1, 12, 51,
(1, 15, 78,

--3
--2

--) --3) 0
7) 1

17) 2
39) 3
79)
143)

Table (b)

(1, l, m, n)

(1, --9, 33, --37)
(1, --6, lS, --12)
(1, --3, 9, 1)
(1, 0, 6, S)
(1, 3, 9, 15)
(1, 6, 18, 28)
(1, 9, 33, 53)

Example 2. K= Q(a) where a is a root of X +6X+8- 0. O has
a V-basis [1, c,] with 911, a, ]= (2, 0,3,2), and (0" Z[a])=2. K has
no inessential discriminant divisor.

If p:/:2, we have the decomposition of p observing (1, 0, 6, 8)A*,
0_<i_<p-- 1. Table (b) shows that"

(3) , p (3, a- 1) (n m-- l--0 (rood. 3))
(5)=pq, p=(5, a-l), q=(5, a+a+2) (n,--0, n,0, i=--1, 0, 2, 3,

m0 (rood. 5));
(7)=pq, 0=(7, a-2), q=(7, a+2a+3) (n--0, n,0, i=-3,-2,

--1, 0, 1, 3, m0 (rood. 7)).
For p= 2, we form (7, 9, 6, 2)= (2, 0, 3, 2)AB to obtain a’ e O with

911, a’,fl’]=(7,9, 6,2), so that 2X(O’z[a]). (See the proof of
Theorem 4.) a’ is a root of X+9X2+42X+98=O. By observing
(1,9, 42, 98), and (1, 12, 63, 150)= (1, 9, 42, 98)A, we have

(2) p12p., 01 (2, a’), 02= (2, cd-- 1).
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