62. On Ranked Linear Spaces. I

By Teruko TSUDA

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1981)

§ 1. Introduction. Since the notion of ranked spaces was introduced by Kunugi [1], many authors have developed the theory of these spaces. In particular Okano [8] and Nakanishi [7] discussed the completion of these spaces and Washihara [10] gave a definition of ranked linear spaces. On the other hand, Okano [9] and Nagakura [5] utilized completion of some concretely given ranked linear spaces.

It is to be noticed, however, that the method of completion given in [7], [8] can not be applied to the ranked linear spaces as defined in [10].

In the present note, we give another definition of ranked linear spaces which can be, as we shall show in a forthcoming note, completed by a method suggested in [1] and which will cover the method in [5], [9]. (We see easily that our definition of ranked linear spaces is narrower than that given in [10].)

We shall give furthermore a formulation of Closed graph theorem and Banach-Steinhaus theorem in our spaces, which seems natural to us.

The author is thankful to Prof. Y. Nagakura for carefully checking the original version of this paper.

§ 2. Definition of ranked linear spaces. In the following we limit our considerations to ranked spaces of indicator ω_0 (in the terminology of [2]) over a linear space E over real or complex field.

For each non-negative integer n and for each point p of E we have a family $\mathfrak{B}_n(p)$ of subsets of E containing p, called pre-neighborhoods of p of rank n, which will be generally denoted by V(p,n). It is required that for every V(p,n) and $n' \ge n$ there is a $V(p,n') \subset V(p,n)$.

For $\mathfrak{V}_n(0)$ (0 being the origin of E), the following is postulated:

- (1) V(0, n) is symmetrical and E itself is a pre-neighborhood of 0 of rank 0.
- (2) If n < m and $V \subset U$ where $U \in \mathfrak{V}_n(0)$ and $V \in \mathfrak{V}_m(0)$, then $V + V \subset U$ and $\alpha V \subset U$ for any scalar α such that $|\alpha| \le 1$.
- (3) Let n_i , m_i ($i\!=\!0,1,\cdots$) be increasing sequences of non-negative integers such that $n_i\!<\!n_{i+1}$, $m_i\!<\!m_{i+1}$ and U_i , V_i be sequences of preneighborhoods of 0 of rank n_i , m_i respectively such that $U_i\!\supset\!U_{i+1}$, V_i $\supset\!V_{i+1}$. For a pre-neighborhood W of 0 of rank l such that $W\!\supset\!U_0\!+\!V_0$

there exist l'>l, $W'\in\mathfrak{V}_{l'}(0)$ and some integer n satisfying $W\supset W'\supset U_n+V_n$.

(4) If $U \in \mathfrak{V}_n(0)$, $V \in \mathfrak{V}_m(0)$, $V \subset U$ and n < k < m, then there is a $W \in \mathfrak{V}_k(0)$ such that $U \supset W \supset V$.

Next, suppose that the family $\mathfrak{V}(p)$ of pre-neighborhoods of each point p of E is given as follows:

$$\mathfrak{B}(p) = \bigcup_{n=0}^{\infty} \mathfrak{B}_n(p), \qquad \mathfrak{B}_n(p) = \{p + V(0,n) : V(0,n) \in \mathfrak{B}_n^{(p)}(0)\},$$

where $\mathfrak{B}_n^{(p)}(0)$ is a non-empty subfamily of $\mathfrak{B}_n(0)$. And also suppose that the family $\{\mathfrak{B}^{(p)}(0) = \bigcup_{n=0}^{\infty} \mathfrak{B}_n^{(p)}(0) : p \in E\}$ has the following properties (I)–(III):

- (I)(i) If $U \in \mathfrak{V}(0)$ and $p \in U$, then $U \in \mathfrak{V}^{(p)}(0)$.
 - (ii) If $U, V \in \mathfrak{B}(0)$, $V \subset U$ and $V \in \mathfrak{B}^{(p)}(0)$, then $U \in \mathfrak{B}^{(p)}(0)$.
 - (iii) For any $U \in \mathfrak{B}_n^{(p)}(0)$, there is a $V \in \mathfrak{B}_{n+1}^{(p)}(0)$ such that $V \subset U$.
- (II)(i) If $W \in \mathfrak{B}_{l}^{(p)}(0) \cap \mathfrak{B}_{l}^{(q)}(0)$, $W' \in \mathfrak{B}_{l'}(0)$, $W \subset W'$ and l' < l then $W' \in \mathfrak{B}_{l'}^{(p+q)}(0)$.
 - (ii) If $W \in \mathfrak{B}_n^{(p)}(0)$, then $W \in \mathfrak{B}_n^{(\alpha p)}(0)$ for every scalar $\alpha \neq 0$.
- (III) If $U \in \mathfrak{B}_n^{(p)}(0)$, $V \in \mathfrak{B}_m^{(p)}(0)$, $W \in \mathfrak{B}_l^{(r)}(0)$, $p+U \supset p+V \supset r+W$ and n < m < l then $V+W \subset U$.

Remark. The first half of (2), (3) and (III) can be replaced with the following stronger condition:

If $U \in \mathfrak{B}_n(0)$, $V_1 \in \mathfrak{B}_{m_1}(0)$, $V_2 \in \mathfrak{B}_{m_2}(0)$, $U \supset V_1 \cup V_2$ and $n < \min(m_1, m_2)$, then $V_1 + V_2 \subset U$ and there is a $U' \in \mathfrak{B}_{\min(m_1, m_2) - 1}(0)$ such that $U \supset U' \supset V_1 \cup V_2$.

Now we give the following

Definition. We call $(E, \mathfrak{D}_n, \mathfrak{D}_n^{(p)})$ a ranked linear space when these axioms (1)–(4), (I)–(III) are satisfied.

We notice that the ranked linear spaces thus defined differ from topological vector spaces or ranked linear spaces in [5], [9] in the following point; the family of pre-neighborhoods of each point p is obtained by translating a subfamily of the family of pre-neighborhoods of 0 which depends on p, and the family of pre-neighborhoods of 0 is not necessarily filtrant.

Example. Give a sequence of normed spaces $\{(E_k, \|\cdot\|_k)\}_{k=1,2,...}$ with $E_1 \subseteq E_2 \subseteq \cdots$ and $\|\cdot\|_k \ge \|\cdot\|_{k+1}$ on E_k . Let $E = \bigcup_k E_k$ be its ranked union space (cf. [6]) where $\mathfrak{V}_n^{(p)}(0) = \{V(0, k, n) = \{q \in E_k : \|q\|_k < 1/2^n\} : p \in E_k\}$. Then E becomes a ranked linear space defined in this section.

Remark. We may consider the structure of ranked linear space on E and its completion \hat{E} as in [5], [9], but in that case we do not have $\hat{E} = \bigcup_k \hat{E}_k$. We shall show in a later note another natural way to complete these spaces so that this takes place.

§ 3. Basic notions. We remind some notions from [2] adapted to our case.

A sequence of pre-neighborhoods $u = \{p_i + U_i\}_{i=0,1,\dots}$ such that $p_i + U_i \supset p_{i+1} + U_{i+1}$ is said to be fundamental if there exists a sequence $\{n(i)\}$ of integers such that $n(i) \leq n(i+1)$, $U_i \in \mathfrak{B}_{n(i)}^{(p_i)}(0)$ satisfying: For every i there is a j such that $i \leq j$, $p_j = p_{j+1}$ and n(j) < n(j+1).

Such u is said to be a p-fundamental sequence, if $p_i = p$ for all i.

A fundamental sequence is called *canonical*, if $p_{2i} = p_{2i+1}$ and n(2i) < n(2i+1) for all i.

A ranked linear space E is said to be *separated* when for any 0-fundamental sequence $u = \{U_i\}$, we have $\theta(u) = \bigcap_{i=0}^{\infty} U_i = \{0\}$.

We say that E is complete, if every fundamental sequence has non-empty intersection.

For a sequence $\{p_i\}$ of points of E, it is said to *converge* to $p \in E$ if there exists a p-fundamental sequence $\{p+U_i\}$ such that for each i we have a J(i) satisfying $p_j \in p+U_i$ for all $j \ge J$.

Let $(E, \mathfrak{D}_{E,n}, \mathfrak{D}_{E,n}^{(p)})$ and $(F, \mathfrak{D}_{F,n}, \mathfrak{D}_{F,n}^{(q)})$ be ranked linear spaces and let f be a mapping from E into F. Then f is said to be *continuous* at $p \in E$ if for any 0-fundamental sequence $\{U_i\}$ in E such that $U_i \in \mathfrak{D}_{E}^{(p)}(0)$ there exists a 0-fundamental sequence $\{V_i\}$ in F such that $V_i \in \mathfrak{D}_{F}^{(p)}(0)$ and $\{f(p+U_i)\} \leq \{f(p)+V_i\}$.

If f is linear and continuous at 0, then f is continuous at every point of E. (This is easy to see from the property (3) of $\mathfrak{B}(0)$ and the properties (I)(ii), (iii) of $\mathfrak{B}^{(p)}(0)$.)

(Here, for two decreasing sequences of subsets $\{A_i\}$ and $\{B_i\}$, we denote $\{A_i\} \leq \{B_i\}$ when for every B_i there is an A_j such that $A_j \subset B_i$ and denote $\{A_i\} \sim \{B_i\}$ when $\{A_i\} \leq \{B_i\}$ and $\{B_i\} \leq \{A_i\}$.)

We consider the product linear space $G=E\times F$ and define the system of pre-neighborhoods of $r=(p,q)\in G$ as follows:

$$\mathfrak{B}_{G}^{(r)}(0) = \bigcup_{n=0}^{\infty} \mathfrak{B}_{G,n}^{(r)}(0), \qquad \mathfrak{B}_{G,n}^{(r)}(0) = \{V_{1} \times V_{2} : V_{1} \in \mathfrak{B}_{E,n}^{(p)}(0), \ V_{2} \in \mathfrak{B}_{F,n}^{(q)}(0)\}.$$

This $(G, \mathfrak{B}_{G,n}, \mathfrak{B}_{G,n}^{(r)})$ is called the product ranked linear space of $(E, \mathfrak{B}_{E,n}, \mathfrak{B}_{E,n}^{(p)})$ and $(F, \mathfrak{B}_{F,n}, \mathfrak{B}_{F,n}^{(q)})$.

For two ranked linear spaces E and F, these are said to be isomorphic or equivalent if there is a one-to-one, linear mapping τ from E onto F such that for any fundamental sequence $\{p_i + U_i\}$ in E there exists a fundamental sequence $\{q_i + V_i\}$ in F satisfying $\{\tau(p_i + U_i)\}$ of $\{q_i + V_i\}$, and conversely for any fundamental sequence $\{q_i + V_i\}$ in F there exists a fundamental sequence $\{p_i + U_i\}$ in E satisfying

$$\{\tau^{-1}(q_i+V_i)\}\sim \{p_i+U_i\}.$$

Let $(E, \mathfrak{B}_{E,n}, \mathfrak{B}_{E,n}^{(p)})$ and $(F, \mathfrak{B}_{F,n}, \mathfrak{B}_{F,n}^{(q)})$ be ranked linear spaces and suppose that E is a linear subspace of F. E is said to be a ranked linear subspace of F, if the following holds:

For each
$$p \in E$$
, $\mathfrak{B}_{E,n}^{(p)}(0) = \{V \cap E : V \in \mathfrak{B}_{F,n}^{(p)}(0)\}$ and $\mathfrak{B}_{E,n}^{(p)}(0) = \{V \in \mathfrak{B}_{F}(0) : V \cap E \in \mathfrak{B}_{E,n}^{(p)}(0)\},$

furthermore, if $U_1(0, n_1)$, $U_2(0, n_2) \in \mathfrak{D}_E(0)$, $V_1 \in \mathfrak{D}_F(0)$, $U_1 = V_1 \cap E$, $U_1 \supset U_2$ and $n_1 < n_2$, then there exists a $V_2 \in \mathfrak{D}_F(0)$ such that $V_1 \supset V_2$ and $U_2 = V_2 \cap E$.

It is easily seen that if a space E is a linear subspace of a ranked linear space $(F, \mathfrak{D}_{F,n}, \mathfrak{D}_{F,n}^{(g)})$ and there is a system of families of subsets of E, $(\mathfrak{D}_{E,n}, \mathfrak{D}_{E,n}^{(g)})$, which satisfies the above conditions, then $(E, \mathfrak{D}_{E,n}, \mathfrak{D}_{E,n}^{(g)})$ becomes a ranked linear space.

Let A be a subset of E. A is said to be dense in E if for every $p \in E$ and every pre-neighborhood p + U in E, we have $(p + U) \cap A \neq \phi$.

§ 4. Closed graph theorem and Banach-Steinhause theorem. First we introduce the following definitions.

Definition 1. Let \mathfrak{F}_0 be a family of 0-canonical fundamental sequences. When for any 0-fundamental sequence u_0 , there is a $v_0 \in \mathfrak{F}_0$ such that $u_0 \prec v_0$, we say that the family \mathfrak{F}_0 is basic.

In this section we shall consider only the case that E has a basic family, denoted by \mathfrak{F}_0^E , such that for every $\{U_i\} \in \mathfrak{F}_0^E$ each point of U_0 is absorbed by all U_i .

Definition 2. We say that E is absorbent if $E \subset \bigcup \{U_0 : \{U_i\} \in \mathcal{F}_0^E\}$.

Definition 3. Let A be a subset of E. We define as the *closure* of A in E, the set such that $\{p \in E : \text{there is a } \{U_i\} \in \mathfrak{F}_0^E \text{ such that } U_i \in \mathfrak{B}^{(p)}(0) \text{ for all } i \text{ and } (p+U_i) \cap A \Rightarrow \phi \text{ for all } i\}.$ We denote this closure of A by \overline{A} . A is said to be *closed* if $\overline{A} = A$.

Definition 4. Let A be a subset of E. A is said to be bounded in E if there exist $\{U_i\} \in \mathfrak{F}_0^E$ and $\{\alpha_i > 0\}$ such that $A \subset \alpha_i U_i$ for all i.

Definition 5. A ranked linear space E is said to be s-space when we can take a basic family \mathfrak{F}_0^E such that for every $\{V_i\} \in \mathfrak{F}_0^E$ there exists a $\{U_i\} \in \mathfrak{F}_0^E$ such that $\{\overline{V}_i\} \prec \{U_i\}$.

Now, Closed graph theorem and Banach-Steinhaus theorem are formulated as follows. Their proof runs just as in [3], [4].

Theorem 1 (Closed graph theorem). Let $(E, \mathfrak{B}_{E,n}, \mathfrak{B}_{E,n}^{(p)})$ and $(F, \mathfrak{B}_{F,n}, \mathfrak{B}_{F,n}^{(q)})$ be complete ranked linear spaces and suppose that $(F, \mathfrak{B}_{F,n}, \mathfrak{B}_{F,n}^{(q)})$ satisfies the following condition: For any $V \in \mathfrak{B}_{F,n}(0)$ there exists a family of countable pre-neighborhoods of 0 in F with rank n+1 such that each of these pre-neighborhoods is contained in V and its union absorbs each point of V. If f is a closed linear mapping from E into F, then f is continuous at every point of E. (Here f is said to be closed if the set $\{(p, f(p)) : p \in E\}$ is closed in $E \times F$.)

Theorem 2 (Banach-Steinhaus theorem). Let E be complete and F be an s-space such that the set of terms of fundamental sequences in \mathfrak{F}_0^F is countable. Let A be a family of continuous linear mappings from E into F. If A is pointwise bounded, then A is equi-continuous at every point of E. (Here A is said to be pointwise bounded if for each

point $p \in E$ the set $\{f(p): f \in A\}$ is bounded in F. A is said to be equicontinuous at $p \in E$ if for every $\{U_i\} \in \mathfrak{F}_0^E$ such that $U_i \in \mathfrak{B}_E^{(p)}(0)$, there exists a $\{V_i\} \in \mathfrak{F}_0^F$ such that $V_i \in \mathfrak{B}_F^{(f(p))}(0)$ and $\{f(p+U_i)\} \prec \{f(p)+V_i\}$ for all $f \in A$.)

References

- K. Kunugi: Sur les espaces complets et régulièrement complets. I, II, III.
 Proc. Japan Acad., 30, 553-556 (1954); 30, 912-916 (1954); 31, 49-53 (1955).
- [2] —: Sur la méthode des espaces rangés. I, II. ibid., 42, 318-322 (1966);
 42, 549-554 (1966).
- [3] Y. Nagakura: On closed graph theorem. ibid., 48, 665-668 (1972).
- [4] —: On Banach-Steinhaus theorem. ibid., 49, 333-336 (1973).
- [5] —: The nuclear spaces introduced by some family of operators in Hilbert space. I, II. TRU Math., Sci. Univ. of Tokyo, 13(1), 9-24(1977); 13(2), 13-26(1977).
- [6] S. Nakanishi: On the strict union of ranked metric spaces. Proc. Japan Acad., 50, 603-607 (1974).
- [7] —: Completions of ranked spaces. I, II. Math. Japonica, 23, 409-422 (1978); 23, 629-646 (1978).
- [8] H. Okano: On the completion of ranked spaces. Proc. Japan Acad., 33, 338-340 (1957).
- [9] —: Sur les intégrals (E.R.) et ses applications. Osaka Math. J., 11, 187-212 (1959).
- [10] M. Washihara: On ranked spaces and linearity. I, II. Proc. Japan Acad., 43, 584-589 (1967); 45, 238-242 (1969).