61. Images of l_2 -Manifolds under Approximate Fibrations

By Katsuro SAKAI

Institute of Mathematics, University of Tsukuba

(Communicated by Kôsaku Yosida, m. j. a., May 12, 1981)

Let U be an open cover of a space Y. Two maps $f, g: X \to Y$ are said to be U-near (or f is said to be U-near to g) if for each $x \in X$, there is some $U \in U$ which contains both f(x) and g(x). A map $f: X \to Y$ be proper if $f^{-1}(C)$ is compact for each compact set C in Y.

A proper surjection $p: E \to B$ is said to be an approximate fibration [2], provided that given a space X, maps $f: X \times \{0\} \to E$ and $F: X \times I \to B$ such that $pf = F|X \times \{0\}$, and an open cover U of B, there exists a map $\tilde{F}: X \times I \to E$ such that $\tilde{F}|X \times \{0\} = f$ and $p\tilde{F}$ is U-near to F. From [3], CE-maps of ANR's are approximate fibrations.

J. Mogilski [5] proved that among ANR's the CE-images of l_2 -manifolds are l_2 -manifolds (also see Theorem 4.1 in [6]). In this note, we prove the following generalization:

Theorem. Let M be an l_2 -manifold and B a separable completemetrizable ANR. If there is an approximate fibration $p: M \rightarrow B$ from M onto B, then B is an l_2 -manifold.

To prove the above theorem, we use the Toruńczyk characterization of l_2 -manifolds (Corollary 3.3 in [6]) which states that a separable complete-metrizable ANR X is an l_2 -manifold if and only if X satisfies the following two condition:

(*1) For any two maps $f, g: Q \to X$ of the Hilbert cube Q and an open cover U of X, there are two maps $f', g': Q \to X$ such that $f'(Q) \cap g'(Q) = \emptyset$ and f' and g' are U-near to f and g, respectively.

(*2) For any map $f: \sum_{n \in N} P_n \to X$ of a topological sum of compact polyhedra and an open cover U of X, there is a map $f': \sum_{n \in N} P_n \to X$ such that $\{f'(P_n) | n \in N\}$ is locally finite and f' is U-near to f.

Using this characterization, we will prove that each point $x_0 \in B$ has an l_2 -manifold neighbourhood. Since *B* is locally contractible, x_0 has an open neighbourhood *U* which is contractible in *B*. Then *U* is a separable complete-metrizable ANR. Since $p: M \rightarrow B$ is an approximate fibration, it is easy to see that *U* has the following property:

(*) For any open cover \mathcal{U} of U and any map $f: Y \to U$ of any compact space Y, there exists a map $\tilde{f}: Y \to p^{-1}(U)$ such that $p\tilde{f}$ is \mathcal{U} -near to f.

Now we will see that U satisfies the conditions (*1) and (*2), that is, U is an l_2 -manifold.

Condition (*1). Let $f, g: Q \to U$ be maps and U an open cover of U. From (*), there are maps $\tilde{f}, \tilde{g}: Q \to p^{-1}(U)$ such that $p\tilde{f}$ and $p\tilde{g}$ are U-near to f and g, resp. Since $p^{-1}(p\tilde{f}(Q))$ is compact, it is strongly negligible in M (see [1]), so there is a homeomorphism $h: M \to M \setminus p^{-1}(p\tilde{f}(Q))$ which is $p^{-1}(U)$ -near to id. Thus we have maps $f' = p\tilde{f}, g' = ph\tilde{g}: Q \to U$ such that $f'(Q) \cap g'(Q) = \emptyset$ and f' and g' are st(U)-near to f and g, resp.

Condition (*2). Let $f: \sum_{n \in N} P_n \to U$ be a map of a topological sum of compact polyhedra and U an open cover of U. From (*), there exists a map $f: \sum_{n \in N} P_n \to p^{-1}(U)$ such that pf is U-near to f. By the Henderson Approximation Theorem ([4], p. 49, a)), there exists a closed embedding $g: \sum_{n \in N} p_n \to p^{-1}(U)$ which is $p^{-1}(U)$ -near to f. Then pg is st(U)-near to f. Since pg is proper, it is easy to see that $\{pg(P_n)|n \in N\}$ is locally finite.

References

- [1] Anderson, R. D., Henderson, D. W., and West, J. E.: Negligible subsets of infinite-dimensional manifolds. Comp. Math., 21, 143-150 (1969).
- [2] Coram, D. S., and Duvall, P. F., Jr.: Approximate fibrations. Rocky Mount. J. Math., 7, 275-288 (1977).
- [3] Haver, W.: Mapping between ANRs that are fine homotopy equivalences. Pacific J. Math., 58, 457-461 (1975).
- [4] Henderson, D. W.: Stable classification of infinite-dimensional manifolds by homotopy type. Invent. Math., 12, 45-56 (1971).
- [5] Mogilski, J.: CE-decomposition of l₂-manifolds. Bull. Acad. Polon. Sci., 27, 309-314 (1979).
- [6] Toruńczyk, H.: Characterizing Hilbert space topology. Inst. Math., Polish Acad. Sci., preprint 143.