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60. Further Results on the Boundedness and the Attractivity
Properties of Nonlinear Second Order
Differential Equations

By Sadahisa SAKATA*) and Minoru YAMAMOTO**)

(Communicated by Kosaku Yosipa, M. J. A., May 12, 1981)

1. Introduction. Recently in [2], J. R. Graef and P. W. Spikes
discussed the boundedness of solutions of the forced second order non-
linear nonautonomous differential equation

(1)  (a®2) +h(E, z, 2)+q@) f(2)g(@)=elt, 2, 2).

In [4], we discussed the boundedness of solutions of (1) and the attrac-
tivity properties of the equation

(2) (@®2) +p@®)fi(@9g(x)2' +q@) f(x)g:.(x)x=e(t, x, ')
and obtained the results which are strict extensions of ones in [2] and
in [1]. The purpose of this paper is to give the proofs of Remarks
24 in [4].

2. Theorems and proofs. First, we consider the boundedness
of solutions of the equation (1) or an equivalent system of equations
x'=y
y'=7“}7){—a'(t>y— It =, 1) — a(®) F@g W) +elt, z, 1)}
under the following assumptions.

(A) a(t) and q(t) are positive C'-functions in I=[0, co).

(A) f(x) is a continuous function in R' which satisfies

f :“’ F(@)dz=oo.

(A) 9W) is a continuous, positive function in R'.

(A) R(t,x,y) is a continuous function in I X R* which satisfies the
nequality yh(t, z, y)=0.

(A) e(t, z,y) is a continuous function in I X R
In what follows, we shall use the notations o/(t), =max {a/(t), 0} and
a'(t).=max {—a'(t),0}. We shall also use

F(x)zr Fadu and  G(y)— j ECE Y
0 o g(v)
Theorem 1. Suppose (A)-(A,) and the following conditions.

IO gy, (L Dgr o
(4) Lde , . q(t)dt< .

(3)
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(5) ( ) — < MG(y) in |y|=k for some M>0 and k=0.

(6) There exist continuous, nonnegative functions r,(t) and r,(t)

satisfying
let, @, y)1<_._“(2[|q(t()t)‘ +r@+n®lyl [ rdt<eo (=1,2).

Then any solution x(t) of (1) is bounded.

If, in addition, the functions G(y) and q(t) satisfy the condition :

(7) G- as |Y|—oo, q(t)<q, for some constant q,,
then any solution (x(t), y(t)) of (3) is bounded.

Remark 1. It follows from (4) that there exist positive constants
a,, 0, and ¢, which satisfy a,<a(t)<a, and q,<q(t) in I. The assump-
tion (A,) and the condition (5) imply that there exist constants M’ >0
and m=0 such that

( )

Proof of Theorem 1. Since (A,) implies that F'(x)— o as|z|—co,

there exists a positive number F, satisfying the inequality F'(x)+F, =0
for arbitrary x in R'. Let

Vilt, 2, 9)= [g%(m) ) +G(y)+%’;—]

AON L q(s)- }
—| 2= ds4-2 | 2= dsy.
rexp { J o as) =), q(s)
Differentiating V,(£)=V,(t, x(t), y(t)) with respect to ¢ for any solution
(z(@®), y(@®)) of (3), then we have

V{(t)S{ lg'®)| 12 Q@) +M a'(t)_ M r,(t) M 7o(t) }V ®

wGw), Y <miMGw) inR.
9@

q(t) q(t) a(t) a(t) a(t)
2mq’'(#)- 7:() L q'(s)-
+{ Mao) +m att) } exp {2 4@ ds} for any t=0.

Integrating the above inequality from %, to ¢, and using Gronwall’s
lemma, we obtain from (4) and (6) that

V<[V [ {ZRaO- ™ g o)hds-exp {2 [ - gs)]

Mq(s) o, q(s)
R AON Aq’(S)- JTAACR
xexp [ g6 ds | {4 o) o)
+—¢1(S)+M 7'2(3)}d3]
a, a, |

<c,q(t) for t>1,.
Now it follows that for t=>1%,,

F(@(t)) < ¢, exp { j O }

o a(s)

and
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Gt =ea® exp ([ L0 g5},
o a(s)

The proof of Theorem 1 is now completed by (A,) and (7). Q.E.D.

Corollary 1. Suppose (A)—(A;), (6) and the following conditions :

(8) d'@®)=0, a(®)<a, for a constant a,>0 and j q ((tt))— dt< oo

(9) There exist constants M >0 and m=0 such that

M i MG iR
9W)

Then any solution x(t) of (1) is bounded.

If, in addition, the condition (7) holds, then any solution (x(t), y(t))
of (3) is bounded.

The proof of Corollary 1 is similar to that of Theorem 1 and we
shall omit its details.

Next, we consider the attractivity properties of the equation (2)
or an equivalent system

=y
20y ““W{ &Y — DO @9 WY — a®) @) 9. W)+ eft, @, 1)}
under the assumptions (A,), (A,) and the following assumptions.
A6 la’(t)l dt ~ Iq (t)l 1Y dt< oo
& L a(t) <o L q®

(A) p() is a continuous function in I satisfying p, <pE)<p, for
some positive constants p, and p,.

(Ay)  fi(@) and f.(x) are continuous, positive functions in R' and
f®) satisfies rm e f@)da=+ oo.

A) 9. and gz(y) are continuous, positive functions in R' and
9-(¥) satisfies L h dy =+ oo.

2('!/)
Remark 2. If we assume r ilg(?)—‘oliK oo, then the latter of (Ay)
o q

follows from the condition q(t)<q, for t € I.

On the other hand, (A,) implies the existence of positive constants
a, 0y, ¢, and g, such that a,<a(®)<a, and ¢, <q)<q, for tel.

From now on, we shall use the following functions:

Fy(2)= j:fl(wdu, Fiy@)= j”ufz(u)du, Go<y)=j” dv,

v
9:(v)
dv and G,(y)= LGo(y)———{G )

G,
W=, gt( )

where L is a positive constant to be determined later.
Theorem 2. Suppose (A)), (A,)-(A,), (6) and the following condition.
(11) There exist constants M >0 and k=0 such that
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Y MG inlyl=k.
9:(%)

Then every solution of (10) approaches (0,0) as t—co.

Proof of Theorem 2. The boundedness of solutions of (10) is an
immediate consequence of Theorem 1, since (A;) implies F,(x)— + oo as
|#|—oco and since (A,) implies Go(y)— + o as |y|—>oo. Let (x(t), y(?)) be
a solution defined in [£,, o) of (10), then there exists a constant K such
that [2@)|+|y(@)|<K for t=t,. It follows from (A,) and (A,) that there
exist positive constants ¢, ¢, - - -, ¢; such that

12) e=fil®=Ee, a=fi@=Ze, £9:(W=c and 69,6
in jz|+|y|<K. Let L L )

—_— v3
V¢, 2, ) T0) F(@)+G @y + o Fz(x)+WGz(y)
for (¢, z, y) € I X R?, then we have for tel, |2|+|y|<K

Vz(t, Z, y)ZLFZ(x)+_1 Gz(y)z 03L -+ 1 (L _ 1 >y2

= a(t) q(®) = 2q, 29, \¢, ¢
and
1 . L 1
V., , y)_%{Fl(x) +2F1(x)G1(?/)}+ () Fz(x)+ @ Go(y)

2 L ¢ L

é( CZ + 02 + 04 ) x2+< 2 + )yZ.
29,  2q6 20, 2q,¢;  2q,c,

Differentiating V,(t)=V,(¢t, z(t), y(t)) with respect to £, we obtain

Vi< COL 1 (p o aw)y+—L |G, ' @®)] [ [YF(@)]
®= q(®) {Zq(t)( @+ (y))+q(t)| (y)|}+ a(t) {q(t)gl(y)

L Ly* g’ @) 7,(t) |Fy ()]
L g :
T T q(t)gz(y)}J“( May a(t)q(t>) ( 7@

Lyl () (|yF\@)| | Ly* \, fi(®) p(t)
o) e et o) a (o) WP
Ji(@) Jo(2)9:(y) Lp@®)fi(#)9:(y) , .

a0 " waw O snawe
We can choose L so large that (L/¢,—1/¢)/2=1+1/c,. Then we get
G = L/cs—1/)Y /22 Y, ¥*/9:(¥) < A/c)y* < Go(y) and ¢y (2 + ¥
<V,(@, z, )< e(xt+y?) for t €I, |x|+|y|< K, where ¢, and ¢,, are posi-
tive constants. It is clear that |yF (x)|<Zc, |2y|Z(c./2)(2*+ Y7, ¥G,(Y)
< A/e)y’, aF (@) = e2?, |YF(@)]/9:(y) + Ly*/9.(W) < (¢/2¢) (2" + )
+(L/cyy*<(cr/2¢5+L/c)(@*+v") and |F.(@)|/9:(¥) + L |[y]/9:¥) = (¢/ ¢
+L/e)K in |z|+|y|<K. Analogously, we can show that fi(x)/q(f)
A+ p®)/a@®) |yF, ()| + (fi(@)/q@®)yG.(y) — (f.(®) 9:(¥) /a®) 9. () F, ()
—(Lp@®) f,(@)9,(¥) /a®)a@®)g.(N)Y’ < —cu(@*+¥?) in |z|+|y|<K for L
large enough, where c,, is some positive constant. Thus we have that
’ i1 @] | /@) ' @]
Vﬁ(t>g[—7w-+L,{ L +r.®}| Vi + L e +r®)
for some L,>0 and L,>0.
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Now, let

W(t, x,9)=Vit, 2, y)- exp [—L, j: { |‘f1' 8' + |‘Z 8' +rz(s)}ds],

then we obtain
R ANAOIENAG] 2 L o
Cy exp[ LIL { ) + o(®) +r2(8)}ds](x +Y)SWE, %, )
for tel, |x|+|y|<K and also
, _Cu lq'(®)]
W) < W(t)+L2{———q(t) +1@®),

clO

where W({t)=W(, x(t), y(t)). The following Lemma completes the
proof of Theorem 2. Q.E.D.

Lemma 1. Consider a system of differential equations

(S) «'=f(t,x), where f(t, x)is continuous in I X D, D={x € R*|||z||
<H}, H>0 and ||-|| is the Euclidean norm. If there exists a Liapunov
function U(t, x) defined in I XD such that

(i) U@, x) is continuously diff erentiable in I X D,

(ii) cllz|PL U, x), where ¢ is a positive constant,

(i) U@, 2)<—2UE, ) +7r@), where 2 is a positive constant and

r(t) 1s a continuous, nonnegative function satisfying I:?”(t)dt< o0,
then every solution of (S) which defined in the future in D, approaches
the origin as t—oo.
The proof is given by the variation of constant formula.
Theorem 3. Suppose (A), (A)-(A,), A1) and the following :
13) fu(x) and g,(y) have positive lower bounds, that is
Jf2(®)=e>0in R and ¢,(¥y)=0>0 in R'.

(14) There exist continuous, nonnegative functions r(t),r,(t)
such that

ject, 2, 1= “O1 Oy @) roflol+ull, [ ravit<e (=1,2).
Mq@®) 0
Then every solution of (10) approaches (0,0) as t—oo.
Proof of Theorem 3. To show the boundedness of solutions, let

Vit ) ={ Lo P @+ Gw+1f exo | - { o i‘g((:)) s

Then we have

V;(t)é[M/{_lg’@w_z(é)_}go(yH J’MT"{Iq'(t)l 4 i@ }mm

a(t) a(t) Mq®)  a(®)
2M () e (e, d®)
@ ald) ‘/FZ(”)G"W)] exp[ L{ s g }dS]
'@ | [4'®)]
ng{ ot +q»l(t)+¢2(t)}v3(t) for some L,>0.

The above estimates are valid, since (11) and (13) imply that
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¥ M M@ 1
2oswew, W< Mewzl L cw+,

|2|< \/_Fz(x) and ﬂg Fu(@)- G = | qu F.(@)+ G},

By Gronwall’s lemma, we obtain

V=Vt exp L. [ {";((Ss))‘ 4l ((s))'us)wz(s)} |-L.

for t>1,=>0.
This implies that

piatr= 8 o[ {401+ 401

and

G (y) <L, exp U: { I‘Z((ss)) | + I(g((j))l }ds] for t=>¢,>0.

Therefore we conclude from (A,) and (A,) that every solution of (10)
is bounded.

Next, let (x(¢), y(t)) be a solution defined in [¢,, o) of (10) which
satisfies |x(0)|+|y ()| <K in [{,, o0) for some K>0. We use the same
function V,(t, 2, ¥) as that in the proof of Theorem 2. Then we have

vig[- o n{12OLL 1COL L g y.w+ L[ 11D @)
on q@® a(t) q(t)
where L,, L,, L, are some positive constants. We can get the conclu-
sion of Theorem 3 along the analogous way as the proof of Theorem

2. Q.E.D.
Corollary 2. Suppose (A), (A)—(Ay), (14) and the following :

(15) —'—%—'Tgma(y), ey  in R

2

16)  fi(x)=e>0 in R'.
Then every solution of (10) approaches (0,0) as t—oo.
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