75. On a Certain Decomposition of 2-Dimensional Cycles on a Product of Two Algebraic Surfaces

By Mariko Okamoto
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kunihiko Kodaira, m. J. A., June 11, 1981)

In this note, we define a type of decomposition for the 4-dimensional cohomology group of a product of two algebraic surfaces and we use such a decomposition for investigation of algebraic 2-cycles on it. Details of this note will appear elsewhere.

I would like to express my thanks to Prof. N. Sasakura for useful suggestions and encouragement.
§ 1. Hodge-Künneth-Transcendence-decomposition. Let S and S^{\prime} be non-singular projective surfaces defined over the field of complex numbers C. We denote by $C^{r}\left(S \times S^{\prime}\right)$ the group of all cycles of codimension r on $S \times S^{\prime}$ modulo rational equivalence, and we have a cycle map cl, which to each cycle $X \in C^{r}\left(S \times S^{\prime}\right) \otimes_{Z} \boldsymbol{Q}$ associates the cohomology class $c l(X) \in H^{2 r}\left(S \times S^{\prime}, \boldsymbol{C}\right)$. Let $H^{2 r}\left(S \times S^{\prime}, \boldsymbol{Q}\right)_{\text {alg }}$ denote the image of $c l: C^{r}\left(S \times S^{\prime}\right) \otimes_{Z} \boldsymbol{Q} \rightarrow H^{2 r}\left(S \times S^{\prime}, C\right)$. Then, using the Hodge decomposition

$$
\begin{equation*}
H^{2 r}\left(S \times S^{\prime}, C\right) \cong \bigoplus_{p+q=2 r} H^{p, q}\left(S \times S^{\prime}, C\right) \tag{1.1}
\end{equation*}
$$

of the complex cohomology, we know

$$
H^{2 r}\left(S \times S^{\prime}, \boldsymbol{Q}\right)_{\mathrm{alg}} \subseteq H^{r, r}\left(S \times S^{\prime}, C\right) \cap H^{2 r}\left(S \times S^{\prime}, \boldsymbol{Q}\right)=H^{2 r}\left(S \times S^{\prime}, \boldsymbol{Q}\right)_{\text {Hodge }}
$$

We define

$$
H^{2}(S, C)_{\text {trans }}=\underset{U \subset S, \text { open }}{\lim } H^{2}(U, C),
$$

and we have the "transcendence-decomposition" of $H^{2}(S, C)$ with respect to the intersection numbers,

$$
\begin{equation*}
H^{2}(S, C) \cong H^{2}(S, C)_{\mathrm{alg}} \oplus H^{2}(S, C)_{\text {trans }} \tag{1.2}
\end{equation*}
$$

where $H^{2}(S, \boldsymbol{C})_{\text {alg }}=H^{2}(S, \boldsymbol{Q})_{\text {alg }} \otimes_{Q} C$ (cf. Hodge and Atiyah [3], Grothendieck [1]).

Using (1.1), (1.2) and the Künneth decomposition, we make the following

Definition (1.3). The Hodge-Künneth-Transcendence-part (HKTpart) of $H^{4}\left(S \times S^{\prime}, C\right)$ is its subspace

$$
\begin{aligned}
H_{\text {hkt }}^{4}\left(S, S^{\prime}\right) & \cong \\
& \left.\not H^{2,0}(S, C) \otimes H^{0,2}\left(S^{\prime}, C\right)\right\} \oplus\left\{H^{0,2}(S, C) \otimes H^{2,0}(S, C)_{\text {trans }} \otimes H^{1,1}\left(S^{\prime}, C\right)_{\text {trans }}\right\},
\end{aligned}
$$

where $H^{1,1}(S, C)_{\text {trans }}=H^{1,1}(S, C) \cap H^{2}(S, C)_{\text {trans }}$. We let $p: H^{4}\left(S \times S^{\prime}, C\right)$ $\rightarrow H_{\mathrm{hkt}}^{4}\left(S, S^{\prime}\right)$ denote the projection, and let $H_{\mathrm{nkt}}^{4}\left(S, S^{\prime}\right)_{\mathrm{alg}}=H_{\mathrm{hkt}}^{4}\left(S, S^{\prime}\right)$ $\cap H^{4}\left(S \times S^{\prime}, \boldsymbol{Q}\right)_{\mathrm{alg}}$.

Note that $H_{\mathrm{nkt}}^{4}\left(S, S^{\prime}\right)$ is equal to

$$
\left\{H^{2}(S, C)_{\text {trans }} \otimes H^{2}\left(S^{\prime}, C\right)_{\text {trans }}\right\} \cap H^{2,2}\left(S \times S^{\prime}, C\right)
$$

By a result of Lieberman [7], the Künneth components of an algebraic cycle class on $S \times S^{\prime}$ are again algebraic and

$$
H^{4}\left(S \times S^{\prime}, \boldsymbol{Q}\right)_{\mathrm{alg}} \cong \bigoplus_{p+q=4}\left\{H^{p}(S, \boldsymbol{Q}) \otimes H^{q}\left(S^{\prime}, \boldsymbol{Q}\right)\right\}_{\mathrm{alg}}
$$

Thus we can show the following
Lemma (1.4). If the irregularities $q(S)=q\left(S^{\prime}\right)=0$, where $q(S)$ $=\operatorname{dim}_{C} H^{0,1}(S, C)$, then we have

$$
H^{4}\left(S \times S^{\prime}, \boldsymbol{Q}\right)_{\mathrm{alg}} \cong\left\{H^{4}(S, \boldsymbol{Q}) \otimes H^{0}\left(S^{\prime}, \boldsymbol{Q}\right)\right\} \oplus\left\{\boldsymbol{H}^{0}(S, \boldsymbol{Q}) \otimes \boldsymbol{H}^{4}\left(S^{\prime}, \boldsymbol{Q}\right)\right\}
$$

$$
\oplus\left\{H^{2}(S, \boldsymbol{Q})_{\mathrm{alg}} \otimes H^{2}\left(S^{\prime}, \boldsymbol{Q}\right)_{\mathrm{alg}}\right\} \oplus H_{\mathrm{hkt}}^{4}\left(S, S^{\prime}\right)_{\mathrm{alg}} .
$$

§2. Some basic properties. Throughout this section, S and S^{\prime} denote non-singular projective surfaces with $q(S)=q\left(S^{\prime}\right)=0$.

Definition (2.1). Let X be a prime 2-cycle on $S \times S^{\prime}$, and let π_{i} ($i=1,2$) be the projection of $S \times S^{\prime}$ on S, S^{\prime}. The prime cycle X is degenerate if $\operatorname{dim} \pi_{1}(X)$ or $\operatorname{dim} \pi_{2}(X)$ is less than two. We denote by $F C^{2}\left(S, S^{\prime}\right)\left(\cong C^{2}\left(S \times S^{\prime}\right)\right)$ the free abelian group generated by degenerate prime cycle classes, and denote by $F H^{4}\left(S, S^{\prime}\right)$ the image of $F C^{2}\left(S, S^{\prime}\right)$ $\otimes_{Z} \boldsymbol{Q}$ by the cycle map $c l$. (Hence $F H^{4}\left(S, S^{\prime}\right) \subseteq H^{4}\left(S \times S^{\prime}, \boldsymbol{Q}\right)_{\mathrm{alg}}$.)

Definition (2.2). Denote by $D C^{2}\left(S \times S^{\prime}\right)\left(\subseteq C^{2}\left(S \times S^{\prime}\right)\right)$ the free abelian group generated by intersections of two divisor classes on $S \times S^{\prime}$, and $D H^{4}\left(S \times S^{\prime}\right)=\operatorname{cl}\left(D C^{2}\left(S \times S^{\prime}\right) \otimes_{Z} \boldsymbol{Q}\right)\left(\subseteq H^{4}\left(S \times S^{\prime}, \boldsymbol{Q}\right)_{\mathrm{alg}}\right)$.

Then we have
Theorem (2.3). i) $\quad F H^{4}\left(S, S^{\prime}\right)=\left\{H^{4}(S, \boldsymbol{Q}) \otimes H^{0}\left(S^{\prime}, \boldsymbol{Q}\right)\right\}$ $\oplus\left\{H^{0}(S, \boldsymbol{Q}) \otimes H^{4}\left(S^{\prime}, \boldsymbol{Q}\right)\right\} \oplus\left\{H^{2}(S, \boldsymbol{Q})_{\mathrm{alg}} \otimes H^{2}\left(S^{\prime}, \boldsymbol{Q}\right)_{\mathrm{alg}}\right\}$,
ii) $\quad D H^{4}\left(S \times S^{\prime}\right) \subseteq F H^{4}\left(S, S^{\prime}\right)$.

In particular, $p\left(D H^{4}\left(S \times S^{\prime}\right)\right)=0$. (For the map p, see (1.3).)
In fact, by the Poincaré duality, we have a natural bijection
$\operatorname{Hom}_{C}\left(H^{2}(S, C)_{\text {trans }}, H^{2}\left(S^{\prime}, C\right)_{\text {trans }}\right) \leftrightarrows H^{2}(S, C)_{\text {trans }} \otimes H^{2}\left(S^{\prime}, C\right)_{\text {trans }}$.
If $X \in F C^{2}\left(S, S^{\prime}\right)$, then by the definition of $H^{2}(S, C)_{\text {trans }}$, the correspondence

$$
X(\quad): H^{2}(S, C)_{\text {trans }} \rightarrow H^{2}\left(S^{\prime}, C\right)_{\text {trans }} ; u \mapsto X(u)=\pi_{2 *}\left(X \cdot \pi_{1}^{*} u\right)
$$

is zero map. i) follows from this. By taking account of the divisorial correspondences between S and S^{\prime} [5], [11], ii) follows from the facts $q(S)=q\left(S^{\prime}\right)=0$. The last assertion follows from (1.4).

Corollary (2.4). Let $X \in C^{2}\left(S \times S^{\prime}\right)$ with $p(c l(X)) \neq 0$, then X is not homologous to a sum of intersections of divisors.

Corollary (2.5). Let $p_{g}\left(S^{\prime}\right) \geqq 1$, where $p_{g}\left(S^{\prime}\right)=\operatorname{dim}_{C} H^{2,0}\left(S^{\prime}, C\right)$, and let $f: S \rightarrow S^{\prime}$ be a surjective morphism, then the graph Γ_{f} of f is not homologous to a sum of intersections of divisors.
((2.5) follows from considering the homomorphism

$$
\left.f^{*}: H^{2,0}\left(S^{\prime}, C\right) \rightarrow H^{2,0}(S, C) .\right)
$$

Next we make

Definitition (2.6). By a correspondence group between S and S^{\prime}, we mean

$$
\operatorname{Cor}^{2}\left(S, S^{\prime}\right)=C^{2}\left(S \times S^{\prime}\right) / F C^{2}\left(S, S^{\prime}\right)
$$

This is considered as a generalization of the correspondence group of curves (cf. Weil [11]). The following proposition shows that HKTpart is useful for investigation of $\operatorname{Cor}^{2}\left(S, S^{\prime}\right)$.

Proposition (2.7). There is a surjective homomorphism

$$
\overline{c l}: \operatorname{Cor}^{2}\left(S, S^{\prime}\right) \otimes_{Z} \boldsymbol{Q} \rightarrow H_{\mathrm{nkt}}^{4}\left(S, S^{\prime}\right)_{\mathrm{alg}}
$$

where $\overline{c l}$ induced by the cycle map cl.
In fact, we have the following exact commutative diagram :

where $p^{\prime}, c l^{\prime}$ are the restrictions of $p, c l$, respectively. (We note that taking some adequate equivalence relation \sim finer than homological equivalence, instead of rational equivalence, we have the correspondences $\operatorname{Cor}_{\sim}^{2}\left(S, S^{\prime}\right)$, and surjective homomorphism $\overline{c l}_{\sim}: \operatorname{Cor}_{\sim}^{2}\left(S, S^{\prime}\right) \otimes_{Z} \boldsymbol{Q}$ $\rightarrow H_{\text {hkt }}^{4}\left(S, S^{\prime}\right)_{\text {alg }}$. For example, for homological equivalence we have the isomorphism $\bar{c} l_{\mathrm{hom}}: \operatorname{Cor}_{\mathrm{hom}}^{2}\left(S, S^{\prime}\right) \otimes_{Z} \boldsymbol{Q} \leftrightarrows H_{\mathrm{hkt}}^{4}\left(S, S^{\prime}\right)_{\mathrm{alg} .}$.)

For the remainder of this note, we investigate the HKT-parts of algebraic 2-cycles on products of certain two surfaces.
§3. Singular K3 surfaces. By a singular K3 surface S, we mean an algebraic $K 3$ surface (defined over C) whose Picard number $\rho(S)$ equals to $\operatorname{dim}_{C} H^{1,1}(S, C)$. (Here we let $\rho(S)=\operatorname{dim}_{C} H^{2}(S, C)_{\mathrm{al} \mathrm{g}}$.) We note that a singular $K 3$ surface S satisfies $q(S)=0, p_{\theta}(S)=1$ and $H^{1,1}(S, C)_{\text {trans }} \cong 0$.

We assume that S and S^{\prime} are singular $K 3$ surfaces. For the details on these surfaces, see Shioda and Inose [9]. Let ω and ω^{\prime} be respectively bases of $H^{\circ}\left(S, \Omega_{S}^{2}\right)$ and $H^{\circ}\left(S^{\prime}, \Omega_{S^{\prime}}^{2}\right)$, and let $\left\{\gamma_{1}, \gamma_{2}\right\}$ and $\left\{\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right\}$ be respectively bases of $H_{2}(S, \boldsymbol{Q})_{\text {trans }}$ and $H_{2}\left(S^{\prime}, \boldsymbol{Q}\right)_{\text {trans }}$. Let

$$
\tau=\int_{r_{1}} \omega / \int_{r_{2}} \omega \quad \text { and } \quad \eta=\int_{r_{1}^{\prime}} \omega^{\prime} / \int_{r_{2}^{\prime}} \omega^{\prime} .
$$

Let E_{τ} denote the elliptic curve of the form $C / Z+\tau Z$. Then we have
Theorem (3.1). $\quad H_{\text {hkt }}^{4}\left(S, S^{\prime}\right)_{\text {Hodge }} \cong \operatorname{Cor}\left(E_{\tau}, E_{\eta}\right) \otimes_{Z} \boldsymbol{Q}$

$$
\cong \operatorname{Hom}\left(E_{\tau}, E_{\eta}\right) \otimes_{Z} \boldsymbol{Q}
$$

where $H_{\mathrm{nkt}}^{4}\left(S, S^{\prime}\right)_{\mathrm{Hodge}}=H_{\mathrm{nkt}}^{4}\left(S, S^{\prime}\right) \cap H^{4}\left(S \times S^{\prime}, \boldsymbol{Q}\right)$ and $\operatorname{Cor}\left(E_{\tau}, E_{\eta}\right)$ denotes the correspondence group between E_{τ} and E_{η} (cf. Weil [11]).
$\S 4$. Some quotient surfaces. Let C_{i} be the algebraic curve in \boldsymbol{P}^{2} defined by

$$
u_{2}^{n}=\prod_{j=1}^{n}\left(u_{1}-a_{i j} u_{0}\right) \quad(i=1,2,3,4, \text { and } n: \text { prime number, }>2) .
$$

(We note that if $a_{i j}=\zeta^{j}, \zeta=\exp (2 \pi \sqrt{-1} / n)$, for all $j=1, \cdots, n$, then C_{i} is the Fermat curve of degree n.) Let G_{n} denote the group of n-th roots of unity: $G_{n}=\langle\zeta\rangle$. We introduce an action of G_{n} on C_{i} :

$$
\left(u_{0}: u_{1}: u_{2}\right) \mapsto\left(u_{0}: u_{1}: \zeta u_{2}\right)
$$

We define an embedding $i_{r}: G_{n} \rightarrow G_{n} \times G_{n}(1 \leqq r \leqq n-1)$ by $i_{r}(\zeta)$ $=\left(\zeta, \zeta^{r}\right)$, and we set $G^{(r)}=\operatorname{Im}\left(i_{r}\right)$. Then $G^{(r)}$ and $G^{(s)}$ act naturally on $\tilde{S}=C_{1} \times C_{2}$ and $\tilde{S}^{\prime}=C_{3} \times C_{4}$, and $G^{(r, s)}=G^{(r)} \times G^{(s)}$ acts on $\tilde{S} \times \tilde{S}^{\prime}(1 \leqq r$, $s \leqq n-1$). Let S_{r} and S_{s}^{\prime} be non-singular models of $\tilde{S} / G^{(r)}$ and $\tilde{S}^{\prime} / G^{(s)}$ respectively $(1 \leqq r, s \leqq n-1)$. Note that one can take S_{1} (resp. S_{1}^{\prime}) to be the surface in P^{3} defined by

$$
\begin{aligned}
& \prod_{j=1}^{n}\left(x_{3}-a_{1 j} x_{2}\right)=\prod_{j=1}^{n}\left(x_{1}-a_{2 j} x_{0}\right) \\
& \text { (resp. } \left.\prod_{j=1}^{n}\left(x_{3}-a_{3 j} x_{2}\right)=\prod_{j=1}^{n}\left(x_{1}-a_{4 j} x_{0}\right)\right) \quad \text { (cf. Sasakura [8]). }
\end{aligned}
$$

(We also note $q\left(S_{1}\right)=q\left(S_{1}^{\prime}\right)=0$ and that if C_{i} are the Fermat curves, for all i, then S_{1} and S_{1}^{\prime} are the Fermat surfaces.)

By a simple calculation, we have

$$
\begin{equation*}
H_{\mathrm{hkt}}^{4}\left(\tilde{S}, \tilde{S}^{\prime}\right)_{\mathrm{alg}} \cong{ }_{1 \leq r, s \leq n-1}\left(H_{\mathrm{hkt}}^{4}\left(\tilde{S}, \tilde{S}^{\prime}\right)_{\mathrm{alg}}\right\}^{g^{(r, s)}} \tag{4.1}
\end{equation*}
$$

where the right side is $G^{(r, s)}$-invariant part, and we have a natural homomorphism
(4.2) $\quad\left\{H_{\mathrm{hkt}}^{4}\left(\tilde{S}, \tilde{S}^{\prime}\right)_{\mathrm{alg}}\right\}^{G^{(r, s)}} \rightarrow H_{\mathrm{nkt}}^{4}\left(S_{r}, S_{s}^{\prime}\right)_{\mathrm{alg}} \quad(1 \leqq r, s \leqq n-1)$.

Since $H^{2,0}(\tilde{S}, C)^{G(r)} \leftrightarrows H^{2,0}\left(S_{r}, C\right)$, the above homomorphism is non-zero.
Now we let $J\left(C_{i}\right)$ be the Jacobian variety of $C_{i}(i=1,2,3,4)$ and $J=\operatorname{Hom}\left(J\left(C_{1}\right), J\left(C_{3}\right)\right) \otimes \operatorname{Hom}\left(J\left(C_{2}\right), J\left(C_{4}\right)\right) . \quad$ Then, from (4.1) and (4.2), we have a natural homomorphism

$$
\theta^{r, s}: J \rightarrow H_{\mathrm{nkt}}^{4}\left(S_{r}, S_{s}^{\prime}\right)_{\mathrm{alg}} \quad(1 \leqq r, s \leqq n-1)
$$

The following facts are also checked easily, by using (4.1) and (4.2).
Theorem (4.3). There exists (r, s), $1 \leqq r, s \leqq n-1$, such that $\operatorname{Im}\left(\theta^{r, s}\right) \neq 0$.

Theorem (4.4). For isogenies $u: J\left(C_{1}\right) \rightarrow J\left(C_{3}\right)$ and $v: J\left(C_{2}\right) \rightarrow J\left(C_{4}\right)$ we have $\theta^{r, s}(u \otimes v) \neq 0$ for all $1 \leqq r, s \leqq n-1$.

Thus for the isogenies u and $v, \theta^{1,1}(u \otimes v)$ is the HKT-part of an algebraic cycle class on $S_{1} \times S_{1}^{\prime}$ which is not a sum of intersection of divisors. (More detailed structures of the HKT-part of the product of the quotient surfaces $S_{1} \times S_{1}^{\prime}$ will be given elsewhere.)

References

[1] Grothendieck, A.: Le groupe de Brauer. Dix Exposés sur la cohomologie des schémas. North-Holland (1968).
[2] -: SGA5 Cohomologie l-adique et fonctions L. Lect. Notes in Math., vol. 589, Springer (1977).
[3] Hodge, W. V. D., and Atiyah, M. F.: Integrals of the second kind on an algebraic variety. Ann. of Math., 62, 56-91 (1955).
[4] Kleiman, S. L.: Algebraic cycles and the Weil conjectures. Dix Exposés sur la cohomologie des schémas. North-Holland, pp. 359-386 (1968).
[5] Lang, S.: Abelian Varieties. Interscience Pub., New York (1959).
[6] Lieberman, D.: Higher Picard varieties. Amer. J. Math., 90, 1165-1199 (1968).
[7] -: Numerical and homological equivalence of algebraic cycles on Hodge manifolds. ibid., 90, 366-374 (1968).
[8] Sasakura, N.: On some results on the Picard numbers of certain algebraic surfaces. J. Math. Soc. Japan, 20, 297-321 (1968).
[9] Shioda, T., and Inose, H.: On singular K3 surfaces. Complex Analysis and Algebraic Geometry, Iwanami-Cambridge Univ. Press, pp. 119-136 (1977).
[10] Tate, J. T.: Algebraic cycles and poles of the zeta function. Arithmetical Algebraic Geometry. Happer \& Row, New York, pp. 93-110 (1965).
[11] Weil, A.: Variétés Abéliennes et Courbes Algébriques. Hermann, Paris (1948).

