69. On the Solvability of Goursat Problems and a Function of Number Theory

By Masafumi Yoshino
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kôsaku Yosida, M. J. A., June 11, 1981)

1. Introduction. In this paper we shall study the reduced Goursat problem with constant coefficients:

$$
\begin{equation*}
L u=\left(\alpha \partial_{1}^{-1} \partial_{2}+\varepsilon+b \partial_{1} \partial_{2}^{-1}+c \partial_{1}^{2} \partial_{2}^{-2}\right) u=h(x) \tag{1.1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right) \in C^{2}, \partial_{i}=\partial / \partial x_{i}(i=1,2)$ and ∂_{i}^{-1} is the integration with respect to the variable x_{i} from the origin to x_{i}.

If the roots $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of the characteristic equation of L;

$$
\begin{equation*}
a \lambda^{3}+\varepsilon \lambda^{2}+b \lambda+c=0 \tag{1.2}
\end{equation*}
$$

satisfy the "Alinhac-Leray condition" $\left|\lambda_{1}\right| \leqq\left|\lambda_{2}\right|<\left|\lambda_{3}\right|$ the solvability and the uniqueness of (1.1) are proved by S . Alinhac in [1] under some additional conditions. Whereas, if the condition is not satisfied few results are known. The best work known is that of Leray's for (1.1) with $c=0$ in [2]. He introduced the number-theoretical function $\rho(\theta)$ (cf. [2]) and expressed a sufficient condition for the solvability and uniqueness of (1.1) for $c=0$ in terms of $\rho(\theta)$.

The purpose of this paper is to study the case $c \neq 0$ without assuming the Alinhac-Leray condition. We introduce a function $\rho\left(\theta_{1}, \theta_{2}\right)$ as a natural extension of the Leray's auxiliary function $\rho(\theta)$ which describes the transcendency of θ_{1} and θ_{2}. In terms of this function we shall characterize the range of the operator L. As a result we reveal a close connection between the algebraic-transcendental properties of the characteristic roots and the solvability and uniqueness. We remark that the results here can be extended to a wider class of equations with multiple characteristic roots.
2. Statement of theorems. Without loss of generality we may assume that $a c \neq 0$. Moreover, by the linear change of variables such as $r x_{1}=z_{1}, x_{2}=z_{2}(r \neq 0)$ we may assume that eq. (1.2) has the root 1 and that the absolute values of other roots do not exceed 1. Since we are interested in the case where the Alinhac-Leray condition is not satisfied we assume $0<\left|\lambda_{1}\right| \leqq\left|\lambda_{2}\right|=1$. Let H_{0} be the set of functions analytic at the origin. Then

Theorem 2.1. If the roots $\lambda_{1}, \lambda_{2}, 1$ of eq. (1.2) are not distinct the $\operatorname{map} L: H_{0} \rightarrow H_{0}$ is bijective.

In view of this theorem we shall consider the case where the roots $\lambda_{1}, \lambda_{2}, 1$ are distinct. Let I_{k} be defined by

$$
I_{k}=\lambda_{1} \lambda_{2}\left\{\lambda_{1}^{k+2}\left(1-\lambda_{2}\right)+\lambda_{2}^{k+2}\left(\lambda_{1}-1\right)+\lambda_{2}-\lambda_{1}\right\}
$$

Then we have
Proposition 2.1. The map $L: H_{0} \rightarrow H_{0}$ is injective iff I_{k} does not vanish for $k=1,2, \cdots$.

To study the range of L we consider the following three cases; A) $\left.\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1, \mathrm{~B}\right)\left|\lambda_{1}-1\right|=\left|\lambda_{1}-\lambda_{2}\right|$ and $\left.\left|\lambda_{1}\right|<1, \mathrm{C}\right)$ otherwise.

Case A) Write $\lambda_{j}=\exp \left(2 \pi i \theta_{j}\right), 0 \leqq \theta_{j}<1(j=1,2)$ and define the function $\rho\left(\theta_{1}, \theta_{2}\right)$ by

$$
\rho\left(\theta_{1}, \theta_{2}\right)=\liminf _{k \rightarrow \infty} \inf _{p, q \in Z}\left(\left|k \theta_{1}-p\right|^{1 / k}+\left|k \theta_{2}-q\right|^{1 / k}\right)
$$

Note that the function $\rho(\theta, 0)$ is the one introduced by J. Leray in [2]. Then we have

Theorem 2.2. Let $\left(\lambda_{1}, \lambda_{2}\right)$ be in Case A). Then $L H_{0}=H_{0}$ if and only if $\rho\left(\theta_{1}, \theta_{2}\right)>0$.

Remarks. a) It follows from the definition of I_{k} that I_{k} vanishes iff both θ_{1} and θ_{2} are rational. Hence, by Theorem $2.1 L$ is bijective iff $\rho\left(\theta_{1}, \theta_{2}\right)>0$.
b) If we define Δ as the set of all real θ satisfying $\rho(\theta, 0)=0$ we can see that $m_{1}(\Delta)=0$ and that the set Δ has the density of continuum (cf. [3]). Then the set of all $\left(\theta_{1}, \theta_{2}\right)$ such that $\rho\left(\theta_{1}, \theta_{2}\right)=0$ are contained in $\Delta \times \Delta$ and contains all the points $(l \theta, m \theta)$ where $\theta \in \Delta$ and l and m are integers.

Next we shall study the case $\rho\left(\theta_{1}, \theta_{2}\right)=0$. First we consider the case where both θ_{1} and θ_{2} are rational. We determine the integers s_{1} and s_{2} by $\theta_{1}=r_{1} / s_{1}, \theta_{2}=r_{2} / s_{2}$ where r_{1}, s_{1} and r_{2}, s_{2} are relatively prime non-negative integers respectively. We denote the least common multiple of s_{1} and s_{2} by s_{0}. Then

Theorem 2.3. A function $h(x) \in H_{0}$ is in the image $L H_{0}$ of H_{0} by L iff $h(x)$ satisfies, for all $k=s_{0} p-1, s_{0} p-2(p=1,2, \cdots)$,

$$
\begin{equation*}
\sum_{j=1}^{k} h_{k-j, j-1} I_{k-j}=0 \tag{2.1}
\end{equation*}
$$

where $h(x)=\sum h_{p, q} x_{1}^{p} x_{2}^{q} /(p!q!)$. The kernel of the $\operatorname{map} L: H_{0} \rightarrow H_{0}$ is an infinite-dimensional vector space.

To study the case where either θ_{1} or θ_{2} is irrational we need some preparations.

For each $\eta \geqq 0$ we define the class of entire functions B_{η} by

$$
B_{\eta}=\left\{h \in H_{0} ;\left|h_{\alpha}\right| \leqq M_{0} r_{1}^{|\alpha|}\left(\alpha_{1}!\alpha_{2}!\right)^{1-\eta} \text { for some } M_{0}, r_{1}>0\right\} .
$$

Here $h(x)=\sum h_{\alpha} x^{\alpha} / \alpha!$. Note that $B_{0}=H_{0}$. Let $t=\left[a_{1}, a_{2}, \cdots\right]$ be a continued fraction expansion of irrational number $t(0<t<1)$ with

$$
a_{1}=[1 / t], \quad \alpha_{2}=1 / t-a_{1}, \cdots, a_{n}=\left[1 / \alpha_{n}\right], \quad \alpha_{n+1}=1 / \alpha_{n}-a_{n},
$$

where $[\mu]$ denotes the largest integer $\leqq \mu$. Then we determine the integer $q_{n}(n=1,2, \cdots)$ by the relation $q_{n}=a_{n} q_{n-1}+q_{n-2}, q_{-1}=0, q_{0}=1$ ($n=1,2, \cdots$) and set, for $\gamma \geqq 0$,
$J_{r}=\left\{t ; 0<t<1, t\right.$ is irrational and satisfies $\left(a_{n+1}\right)^{1 / q_{n}}=O\left(q_{n}^{\tau}\right)$ as $\left.n \rightarrow \infty\right\}$. Here if $\gamma=0$ we understand that $O\left(q_{n}^{r}\right)=O(1)$. We easily see that $J_{\gamma^{\prime}}$ $\subseteq J_{\gamma}$ for every $0 \leqq \gamma^{\prime}<\gamma$ and that J_{γ} has the density of continuum. Moreover we can prove that $\rho(\theta, 0)=0$ for every $\theta \in J_{\gamma} \backslash J_{0}(\gamma>0)$. Note that $\rho(l \theta, m \theta)=0$ for every $\theta \in J_{\gamma} \backslash J_{0}$ and every integers l and m. Then we have

Theorem 2.4. The map $L: H_{0} \rightarrow H_{0}$ is injective and the image $L H_{0}$ has the following properties:
a) Suppose that θ_{1} or θ_{2} is in J_{γ} for some $\gamma>0$. Then $L H_{0}$ contains B_{η} for every $\eta \geqq \gamma$.
b) Let $m_{j}(j=1,2)$ be arbitrary positive integers and let m_{0} $=\min \left(m_{1}, m_{2}\right)$. If $\theta_{j}=m_{j} \theta-\left[m_{j} \theta\right](j=1,2)$ for some $\theta \in J_{r} \backslash J_{r^{\prime}}\left(\gamma^{\prime}<\gamma\right)$ we have

$$
L H_{0} \supsetneq B_{\eta} \text { for all } \eta \geqq m_{0} \gamma, \quad L H_{0} \not \supset B_{\eta} \text { for all } 0 \leqq \eta<\gamma^{\prime} .
$$

It follows from b) and the definition of J_{r} that for an arbitrary $\gamma>0$ there exists a set $\Omega_{r} \subset R^{2}$ with the density of continuum such that, for every $\left(\theta_{1}, \theta_{2}\right) \in \Omega_{r}, L H_{0} \supseteq B_{\eta}$ if $\eta \geqq \gamma$ and $L H_{0} \not \supset B_{\eta}$ if $0 \leqq \eta<\gamma$.

Case B) We set $\lambda_{1}=r \exp (\pi i \theta), \lambda_{2}=\exp (2 \pi i \theta)$ where $-1<r<1$. Then

Theorem 2.5. For every $r(-1<r<1)$ there exists a set F of real numbers with $m_{1}(F)=0$ such that if θ is not in F the map $L: H_{0} \rightarrow H_{0}$ is bijective. Similarly, for every real number θ there exists a set \tilde{F} $\subset(-1,1)$ with $m_{1}(\tilde{F})=0$ such that if r is not in \tilde{F} the map L is bijective. Here $m_{1}(\cdot)$ denotes the Lebesgue measure in R^{1}.

Case C) Let (λ_{1}, λ_{2}) be in Case C). Then
Theorem 2.6. Suppose that $I_{k} \neq 0$ for $k=1,2, \cdots$. Then the $\operatorname{map} L: H_{0} \rightarrow H_{0}$ is bijective. While if I_{k} vanishes exactly for $k=k_{1}, \cdots, k_{l}$, a function $h \in H_{0}$ is in the image $L H_{0}$ iff $h(x)$ satisfies (2.1) for $k=k_{1}, \cdots, k_{l}$. Furthermore the kernel of L is a finite-dimensional non-trivial vector space.

References

[1] S. Alinhac: Le problème de Goursat hyperbolique en dimension deux. C. Partial Diff. Eqs., 1(3), 231-282 (1976).
[2] J. Leray: Caractère non Fredholmien du problème de Goursat. J. Math. Pures Appl., 53, 133-136 (1974).
[3] J. Leray et C. Pisot: Une fonction de la théorie des nombres. ibid., 53, 137-145 (1974).
[4] M. Yoshino: On the Solvability of Goursat Problems and a Function of Number Theory (in preparation).

