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68. The Incompressible Limit of Compressible Fluid
Motions in a Bounded Domain

By Rentaro AGEMI
Department of Mathematics, Hokkaido University

(Communicated by Késaku YOSIDA, M. J. A., June 11, 1981)

1. Introduction. Theaim of this note is to show the convergence
of inviscid compressible fluids in a bounded domain to their incom-
pressible limit as the Mach number becomes small. For the periodic
fluid motions see Ebin [2] and Klainerman-Majda [4].

2. Statements of results. We consider the equations of inviscid
compressible fluid motions involving the Mach number as parameter
in a bounded domain 2 of R?® with smooth boundary o012 ;

30+ WPV + QW p(h) /o' =0

(1) 9,0 +div (p*v") =0 n 0, )X %,
L @Y0), p0)=(v,, po) on £,
(v, my=0 on (0, T) x 82.

Here 2 is the reciprocal of the Mach number and (v,n) is the inner
product of velocity field v and the unit outernormal » to 2. Moreover
we assume that the fluid motion is isentropic, i.e., the pressure p is a
smooth function of the density p only and its derivative p’ in p is posi-
tive.
We shall show that the limit v~ of v* as 1—oo satisfies the equa-
tions of homogeneous incompressible fluid motion ;
P@v>+ @F)v=)=0

div v= —0 in (0,T) X 2,
(2) v2(0) =7, on £,
(ve,ny =0 on (0, T) x a2,

where P is the orthogonal projection on solenoidal vector fields.

When we discuss the incompressible limit, we may assume that

(3) w,is solenoidal and p, is constant.
By definition of P there exists a pressure function p= such that

0,0° 4+ @=F)v=+Vp=/p,=0.

If (v* p") converges to (v=,p~) as 1—oo, then 2Fp(p?)/p* converges to
V'p=/p, and Fp= vanishes at t=0. Thus we can also assume that

(4) 02%0)=— )y, is solenoidal.

Furthermore we assume the compatibility conditions up to order
3 for the initial boundary value problem (1),;

(5), @0),ny=0 (k=0,1,2) on 02.
We note that the assumptions (3) and (4) imply (5), and (5),.
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The main result is

Theorem. Suppose that v, belongs to H*(2, R*) and (v, p,) satisfy
the conditions (3), (4) and (5),. Then there exists a positive constant
T, independent of 2 such that the initial boundary value problem (1),
has a unique solution (v,p") with of(? p*) e L>([0,T,], H*-*(2, RY)
(k=0,1,2,3) and (v*, p*) converges in the following sense to the solu-
tion (v=,p,) of () with d%v> e L~([0,T,], H*~*(2,R%) (k=0,1,2,3) as
A—00

or(?, p—ok(v=, p) weak-star in L=([0, T,], H*-*(2, R*)
(k=0,1,2).
Remark. We can also show the similar results for the fluid
motions involving the equation of entropy S;
3S WS =0,  o=p®*, S,
op dp
-a?> 0, 5§¢0.
Here we consider the pressure p as unknown and its initial value is
constant. In this case the limit (v=,p~) satisfies the equations of
(inhomogeneous) incompressible fluid motion ;
P(p=@v~+@"F)v=))=0
divo~r=0 in (0, T)x 8,
(6) 8,07+ @"F)p~=0
(’vw(o)y Pw(o)) =('v09 PO) on Q’
{v=,ny=0 on (0, T)xan,
since the equation 4,5+ (v=F)S> =0 is equivalent to 3,0”+ (v=F)p==0.

The details will be published elsewhere.

3. OQutline of proofs. Theorem can be proved by using the
methods in [1] and [3]. In particular, the energy integral [1, § 6] plays
an important role. Introduce new functions g*=log p* and a(g)=p’
(exp (¢"), we obtain a system of equations equivalent to (1), for un-
knowns (2%, g9 ;

0.0+ @IV 4 a9 W 9 =0

(7, 00+ @G+ divei=0 in 0, x4,
(@0, 9*(0)) = (v, o) on 2,
v, ny=0 on (0, T) X 022.

Since the boundary is characteristic for (7),, we transform (7), to an
equivalent system of integro-differential equations for (w?*, F f*, g*) with
Vi=w+T f* and w'=Pv*;

@,+v7)g'—2* div (a(g)WV g°) =tr (Dv*)")

Aﬁ=—(a,+w7)sﬁ+ﬁlg—I [ evngds om0
2

(8);, w4 P((vV)w'+ WV fH=0
gl(o) =0 azgl(o) =07 wl(o) =P/l)0 on ‘Q?
(g W g*+ @)V, ny =0 on (0, T)x 0%,
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where |£2| is the volume of 2 and Dv=(0v,/0%,; j, k=1,2,3).

A key of proofs is to show the uniform estimates for the solution
% 9% of (8);:

There exist positive constants T',,C and 2, independent of 1 such
that for any ¢t (0<t<T,) and any 1=>21,

(9) 2Fg®l+loF gDl +0F @), =C,

10) V'@ s +110.0' @) [l +-lI07v* B [, = C,

(11)  19'® = golls+10.9°D [+ 0}’ D, = C.
In order to replace C in (11) by C,/2 we use the conservation law of
mass which follows from the second equation of (1),

I 0, (exp (9")dx =0
2
and Poincaré lemma

nhnagcg(nmnﬂ(jg h(x)dx)z).

Set =0 (exp (99) (k=1,2). Then it follows from (9) and (10) that
12)  2019°®) — 9o ls+119.9°® |l + 1 83g* @V [, < C,.

Since a(g’)Vg* is gradient, Theorem follows from the uniform stability

9), (10) and (12).
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