68. The Incompressible Limit of Compressible Fluid Motions in a Bounded Domain

By Rentaro AGEMI

Department of Mathematics, Hokkaido University

(Communicated by Kôsaku Yosida, M. J. A., June 11, 1981)

- 1. Introduction. The aim of this note is to show the convergence of inviscid compressible fluids in a bounded domain to their incompressible limit as the Mach number becomes small. For the periodic fluid motions see Ebin [2] and Klainerman-Majda [4].
- 2. Statements of results. We consider the equations of inviscid compressible fluid motions involving the Mach number as parameter in a bounded domain Ω of R^s with smooth boundary $\partial\Omega$;

$$egin{aligned} & \partial_t v^\lambda + (v^\lambda \mathcal{V}) v^\lambda + (\lambda^2 \mathcal{V} p(
ho^\lambda))/
ho^\lambda = 0 & & ext{in } (0,T) imes \Omega, \ & \partial_t
ho^\lambda + ext{div } (
ho^\lambda v^\lambda) = 0 & & ext{on } \Omega, \ & \langle v^\lambda, n
angle = 0 & & ext{on } (0,T) imes \partial \Omega. \end{aligned}$$

Here λ is the reciprocal of the Mach number and $\langle v,n\rangle$ is the inner product of velocity field v and the unit outernormal n to Ω . Moreover we assume that the fluid motion is isentropic, i.e., the pressure p is a smooth function of the density ρ only and its derivative p' in ρ is positive.

We shall show that the limit v^{∞} of v^{λ} as $\lambda \to \infty$ satisfies the equations of homogeneous incompressible fluid motion;

$$egin{aligned} &P(\partial_t v^\infty + (v^\infty arV)v^\infty) = 0 && ext{in } (0,T) imes arOmega, \ & ext{div } v^\infty = 0 && ext{on } arOmega, \ & imes \langle v^\infty, n
angle = 0 && ext{on } (0,T) imes \partial arOmega, \end{aligned}$$

where P is the orthogonal projection on solenoidal vector fields.

When we discuss the incompressible limit, we may assume that

(3) v_0 is solenoidal and ρ_0 is constant.

By definition of P there exists a pressure function p^{∞} such that

$$\partial_t v^{\scriptscriptstyle \infty} + (v^{\scriptscriptstyle \infty} V) v^{\scriptscriptstyle \infty} + V p^{\scriptscriptstyle \infty} / \rho_0 = 0.$$

If $(v^{\lambda}, \rho^{\lambda})$ converges to $(v^{\infty}, \rho^{\infty})$ as $\lambda \to \infty$, then $\lambda^2 \nabla p(\rho^{\lambda})/\rho^{\lambda}$ converges to $\nabla p^{\infty}/\rho_0$ and ∇p^{∞} vanishes at t=0. Thus we can also assume that

(4)
$$\partial_t v^{\lambda}(0) = -(v_0 \nabla) v_0$$
 is solenoidal.

Furthermore we assume the compatibility conditions up to order 3 for the initial boundary value problem (1),;

$$(5)_k \langle \partial_t^k v^{\lambda}(0), n \rangle = 0 \quad (k=0,1,2) \quad \text{on } \partial\Omega.$$

We note that the assumptions (3) and (4) imply $(5)_0$ and $(5)_1$.

The main result is

Theorem. Suppose that v_0 belongs to $H^s(\Omega, R^s)$ and (v_0, ρ_0) satisfy the conditions (3), (4) and (5)₂. Then there exists a positive constant T_1 independent of λ such that the initial boundary value problem (1)_{λ} has a unique solution $(v^{\lambda}, \rho^{\lambda})$ with $\partial_t^k(v^{\lambda}, \rho^{\lambda}) \in L^{\infty}([0, T_1], H^{3-k}(\Omega, R^4))$ (k=0,1,2,3) and $(v^{\lambda}, \rho^{\lambda})$ converges in the following sense to the solution (v^{∞}, ρ_0) of (2) with $\partial_t^k v^{\infty} \in L^{\infty}([0, T_1], H^{3-k}(\Omega, R^3))$ (k=0,1,2,3) as $\lambda \to \infty$;

$$\partial_t^k(v^\lambda,
ho^\lambda) \rightarrow \partial_t^k(v^\infty,
ho_0) \quad weak$$
-star in $L^\infty([0, T_1], H^{3-k}(\Omega, R^4))$ $(k=0, 1, 2).$

Remark. We can also show the similar results for the fluid motions involving the equation of entropy S;

$$egin{aligned} &\partial_t S^{\!\lambda} \! + \! (v^{\!\lambda}\! V) S^{\!\lambda} \! = \! 0, &
ho^{\!\lambda} \! = \!
ho(p^{\!\lambda}, S^{\!\lambda}), \ & rac{\partial
ho}{\partial S} \! > \! 0, & rac{\partial
ho}{\partial S} \! \neq \! 0. \end{aligned}$$

Here we consider the pressure p as unknown and its initial value is constant. In this case the limit $(v^{\infty}, \rho^{\infty})$ satisfies the equations of (inhomogeneous) incompressible fluid motion;

$$P(
ho^{\infty}(\partial_{t}v^{\infty}+(v^{\infty}arGamma)v^{\infty}))=0 \ ext{div } v^{\infty}=0 \ ext{in } (0,T) imes\Omega, \ (6) \quad \partial_{t}
ho^{\infty}+(v^{\infty}arGamma)
ho^{\infty}=0 \ ext{(} v^{\infty}(0),
ho^{\infty}(0))=(v_{0},
ho_{0}) \ ext{on } \Omega, \ ext{\langle} v^{\infty},n{
angle}=0 \ ext{on } (0,T) imes\partial\Omega, \ \end{cases}$$

since the equation $\partial_{\iota}S^{\infty} + (v^{\infty}V)S^{\infty} = 0$ is equivalent to $\partial_{\iota}\rho^{\infty} + (v^{\infty}V)\rho^{\infty} = 0$. The details will be published elsewhere.

3. Outline of proofs. Theorem can be proved by using the methods in [1] and [3]. In particular, the energy integral [1, § 6] plays an important role. Introduce new functions $g^{\lambda} = \log \rho^{\lambda}$ and $a(g^{\lambda}) = p'$ (exp (g^{λ})), we obtain a system of equations equivalent to $(1)_{\lambda}$ for unknowns $(v^{\lambda}, g^{\lambda})$;

$$\left(egin{array}{lll} \partial_{i}v^{2}+(v^{i}arGamma)v^{2}+\lambda^{2}a(g^{i})arVg^{i}=0 & & ext{in } (0,T) imesarOmega, \ \partial_{t}g^{i}+(v^{i}arV)g^{i}+ ext{div }v^{i}=0 & & ext{in } (0,T) imesarOmega, \ (v^{i}(0),g^{i}(0))=(v_{0},g_{0}) & & ext{on } arOmega, \ \langle v^{i},n
angle =0 & & ext{on } (0,T) imes\partialarOmega. \end{array}
ight.$$

Since the boundary is characteristic for $(7)_{\lambda}$, we transform $(7)_{\lambda}$ to an equivalent system of integro-differential equations for $(w^{\lambda}, \nabla f^{\lambda}, g^{\lambda})$ with $v^{\lambda} = w^{\lambda} + \nabla f^{\lambda}$ and $w^{\lambda} = Pv^{\lambda}$;

$$egin{aligned} (\partial_t + v^{\imath}
abla)^2 g^{\imath} - \lambda^2 & \operatorname{div} \left(a(g^{\imath})
abla g^{\imath}
ight) = \operatorname{tr} \left((D v^{\imath})^2
ight) \ & \Delta f^{\imath} = - (\partial_t + v^{\imath}
abla) g^{\imath} + rac{1}{|\Omega|} \int_{a} (\partial_t + v^{\imath}
abla) g^{\imath} dx & \operatorname{in} \left(0, T
ight) imes \Omega, \ & \left(8
ight)_{\imath} & \partial_{\imath} w^{\imath} + P((v^{\imath}
abla) w^{\imath} + (w^{\imath}
abla)
abla f^{\imath} = - (\partial_t + v^{\imath}
abla) g^{\imath} dx & \operatorname{in} \left(0, T
ight) imes \Omega, \ & \left(8
ight)_{\imath} & \partial_{\imath} w^{\imath} + P((v^{\imath}
abla) w^{\imath} + (w^{\imath}
abla)
abla f^{\imath} = - (\partial_t + v^{\imath}
abla) g^{\imath} dx & \operatorname{in} \left(0, T
ight) imes \Omega, \ & \left(8
ight)_{\imath} & \partial_{\imath} g^{\imath} + (v^{\imath}
abla)
abla f^{\imath} = - (\partial_t + v^{\imath}
abla) g^{\imath} dx & \operatorname{in} \left(0, T
ight) imes \Omega, \ & \left(8
ight)_{\imath} & \partial_{\imath} g^{\imath} + (v^{\imath}
abla)
abla f^{\imath} = - (\partial_t + v^{\imath}
abla) g^{\imath} dx & \operatorname{in} \left(0, T
ight) imes \Omega, \ & \operatorname{on} \left(0, T
ight) imes \partial \Omega, \ & \left(8
ight)_{\imath} &$$

where $|\Omega|$ is the volume of Ω and $Dv = (\partial v_i/\partial x_k; j, k=1, 2, 3)$.

A key of proofs is to show the uniform estimates for the solution $(v^{\lambda}, g^{\lambda})$ of $(8)_{\lambda}$:

There exist positive constants T_1 , C and λ_1 independent of λ such that for any t $(0 \le t \le T_1)$ and any $\lambda \ge \lambda_1$

- (9) $\lambda(\|\nabla g^{\lambda}(t)\|_{2} + \|\partial_{t}\nabla g^{\lambda}(t)\|_{1} + \|\partial_{t}^{2}\nabla g^{\lambda}(t)\|_{0} \leq C$
- (10) $||v^{\lambda}(t)||_{3} + ||\partial_{t}v^{\lambda}(t)||_{2} + ||\partial_{t}^{2}v^{\lambda}(t)||_{1} \leq C$,
- $(11) ||g^{\lambda}(t) g_0||_3 + ||\partial_t g^{\lambda}(t)||_2 + ||\partial_t^2 g^{\lambda}(t)||_1 \leq C.$

In order to replace C in (11) by C_1/λ we use the conservation law of mass which follows from the second equation of (1),

$$\int_{\Omega} \partial_t \left(\exp \left(g^i \right) \right) dx = 0$$

and Poincaré lemma

$$||h||_0^2 \le c_{\varrho} (||\nabla h||_0^2 + (\int_{\varrho} h(x) dx)^2).$$

Set $h = \partial_t^k (\exp(g^k))$ (k = 1, 2). Then it follows from (9) and (10) that

(12)
$$\lambda(\|g^{\lambda}(t)-g_0\|_3+\|\partial_t g^{\lambda}(t)\|_2+\|\partial_t^2 g^{\lambda}(t)\|_1 \leq C_1$$
.

Since $a(g^{\lambda})\nabla g^{\lambda}$ is gradient, Theorem follows from the uniform stability (9), (10) and (12).

References

- [1] R. Agemi: The initial boundary value problem for inviscid barotropic fluid motion. Hokkaido Math. J., 10, 156-182 (1981).
- [2] D. G. Ebin: The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math., 105, 141-200 (1977).
- [3] —: The initial boundary value problem for subsonic fluid motion. Comm. Pure Appl. Math., 32, 1-19 (1979).
- [4] S. Klainerman and A. Majda: Singular limits of quasi-linear hyperbolic system with large parameters and the incompressible limit of compressible fluids (to appear in Comm. Pure Appl. Math.).