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1. Introduction. It was R. Fuchs ([1]) who gave first an ex-
ample o2 the isomonodromic deformation. Considering the differential
equation of Fuchsian type

d2y _[ a b+dx -- (x_ 1)
c 3

(x-t) 4(x-)

having x 2 as apparent singularity, he rediscovered the sixth Painlev
equation as isomonodromic deformation equation. Then R. Garnier
([2]) derived all the other Painlev equations by the isomonodromic
deformation for linear differential equations of the form
(i.i) y"-py
with irregular singularities and an apparent singularity. (For the
isomonodromic deformation o equations with irregular singularities,
see [3], [4], [7].)

Recently K. Okamoto ([5], [6])ound the ollowing two remarkable
acts: 1) The Painlev equations are converted into Hamiltonian
systems, called the Painlev systems, with polynomial Hamiltonian
functions. 2) I the linear differential equations considered by Fuchs
and Garnier are transformed into equations o the orm
(1.2) Y" -t- PlY’ -- P2Y =0in a canonical way, then the isomonodromic deformation or the trans-
ormed equations is governed by the Painlev systems.

Fuchs and Garnier, and hence Okamoto supposed that the dif-
erence o the exponents at the apparent singularity is just two up to
the sign. The purpose o this note is to discuss the case when this
difference is greater than two.

2. Preliminaries. I:f the equation (1.2) is transformed into an

equation of the orm (1.1), we have
1 1

(2.1) p=-- P’I +P-P..
Suppose that p and p are rational in x and in several parameters.
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We consider the case when just one o2 the parameters, say t, can be
taken as deformation parameter and the other prameters are viewed
as unctions o t. It is known that the equation (1.2) can be de2ormed
in an isomonodromic way, i and only i there exist linearly independent
solutions y(x, t), y(x, t)depending analytically on t o the equation
(1.2) and two unctions A(x, t), B(x, t)rational in x and analytic in t
which satisfy

y/t=AOy/Ox+By (] 1, 2).
The existence o y, y, A, B implies that the system o equations

’3y/x =z
z/x= --pz--py
,3y/3t=Az+By

is completely integrable, whence we have
3B/x +pB/x--2plA/3x (p/x)A/p/t O,
23B/3x+3A/3x-p3A/x (3p/3x)A/3p/3t O.

Eliminating B, we obtain
(2.2) 2-A/x-2p3A/x-(p/x)A+p/3t O,
where p is given by (2.1). It ollows that the equation (1.1) can be
deformed in an isomonodromic way, i2 and only i there exists a unc-
tion A(x, t) which is rational in x, analytic in t and satisfies (2.2). We
remark that we obtain rom (2.1)

(2.3) A=Iy y/t[+ y y/x,.
y y/3t y y./x

:. Linear differential equations. For each positi.ve integer n,
we consider the ollowing six linear differential equations

L" y,,+(_l-0+l-.+l-0xx--l x xn)_y,

t(t-1)H + 2(2-1)p )y=0,+ x(x- 1) x(x- 1)(x- t) x(x- 1)(x- )

y,,+ (1,..0+x (xt_1) +x-12-0 x-2n )
( tH (-1)/ )y+ x(x- 1) x(x- 1y

+ x(x- 1)(x-
=0,

y,,+(1--0 x t n )y,/(0 H+
x(x-)

y-O’

2x 2x x(x--2)
y=0,
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L" y,_ n
x-2y’+(-4x--2tx--2H+x)Y=O.

The Riemann schemes R for these equations are given as follows"
x=O x=l x=t x=2 x=c/R 0 0 0 0 Z

o 0 n4-1 Z4-
where =((o+C++n--2)--)/4=(Z+oo),

R 0 0 0 0 z

where =((o+O+n--2)--)/4=Z(+),

Rv 0 0 0 0 0

o n+l 1/4 t --0--o--n+2

ni 0 0 0 0 --(O +00)/2

Vot Oo n+l vt (0--0o)/2--n+2

RI 0 0 0 0 0

+1 2/3 0 t --O--n+2

o o o
+1 4/5 0 0 0 t 3/2

4. Confluence o singular points. It was proved by Okamoto
that the equations Lv-L are derived rom L by process o step-by-
step confluence o singularities. This result is generalized as ollows.

Theorem 1. The equations L-L are derived from L by a
process of step-by-step confluence of singularities in the following
order"

LvL L.L LL/
Te roess of sep-by-sep conence is carried o as foIows
LL" xx, , , I+, o o,

/+, , -/, H H/
and hen 0.

LLv xx/,/, /, I+,
oo, I/d, 1

I/P+2-o-n+2, H+k/t H/
and hen 0,
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L--LI x >1+ etx, 2--1+eta, [- >[/t, t ;t2,
o >]/--n+ 1, o, /--0-- 1,
0 0o, H )(H+ Z/t)/2t and then >0,

LN- >L" x >x/e+l/e, )4/e+l/e, p )ep/4,
tt/4 +I/, 0 >I/2, 0
H4H/--/, and then >0,

L >L" x >l+2x, l+2e, ZZ/2,
o >-1/4, )1/4, Oo- ) --1/22 20,
0 >1/2, HH/- and then 0,

LT >L" y >y exp (x/3+tx/2) and then x- )x+l/e,
>+I/5, z--n2--nt/2 >Z/, >t--6/,
>4e-+ 1--n/2, H+n+nt/2 >H/e--t/2es--3/e

and finally >0.
5. Hamiltonian systems. We suppose that x is an apparent

singularity or each equation L. Then we obtain a relation among
t, , Z, H or each equation, and hence H can be considered as a unc-
tion o t, , which is denoted by H}. It is easy to see that H
(J=IV, ..., I) are polynomials o ], Z with rational coefficients in t,
and H (J= IV, ..., I) are rational in , Z, and that or n3, H} are
algebraic in , Z, .

We assign to each L} the Hamiltonian system"

p} d/dt=6H/Z
[dv/dt= --3H}/3.

From Theorem 1, we obtain the ollowing theorem.
Theorem 2. The systems P-P are derived from P, by the

same process of replacements as in Theorem 1 except for the replace-
ments of x in the order

p/’
We transform the equations L} into the following equations of the

2orm (1.1)"

i ----( b c d
(x--l) (x--t) x(x-- 1)

+ t(t-1)H
x(x--1)(x--t)

f y,,= ( a bt ct d +-- (x-- 1) + (x-- 1) + x(x-- 1)
tH+ x(x--1)

ytt ( a X tx t n/2n
4(x-)

n+2n+ 4(x-)
2(--1) )y,x(x--1)(x--)

n +2n
4(x-)

(--1) )y,+ x(x-- 1)(x-- )
H 2 \+2-- (_a) ]’
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n+2n tH+2, \
x x x 4(x-) 2x x(x--) )Y’

( +2n )LI" "= +tz+ + (--)
+2H--_2 ’

( n+2n )LI" y"= 4x +2tx+ 4(x-- 2) +2H--x_2 y"

Suppose that x-2 is aa apparent singularity or each L. Then
for each L, H ca be considered as a functioa of t, 2,, which we denote
by H. We define a Hamiltonian system P by

df/dt=O/
It is clear that or the equations L-L we have a theorem similar

Pv-P we have a theoremto Theorem 1 and that for the systems -n -similar to Theorem 2.

6. Isomonodromic deformation. First we consider the iso-
monodromic deformation or the equations L. Suppose that a, b, c, d
do not depend on the deformation parameter t. (For some equations,
the independency from t of all or some o a, b, c, d is evident.) The
first task is to determine a unction A satisfying (2.2). Utilizing the
canonical expression o solutions at each singularity o2 L and the
relation (2.3), we infer that A is given by

(Kx+L+ and

[= M/(x-) or LI and L,
where K, L,M are functions in t, , . Inserting p and A into (2.2),
then expanding the left hand side into partial ractions and finally
equating the coefficients to zero, we get a system o2 relations. The
equation L can be deformed in an isomonodromic way, i the system
of relations is compatible. If so, we obtain a system of deformation
equations or L.

It is easy to see that i L is deformed isomonodromically, so is

L and that, from a system of deformation equations of L, the corre-
sponding system of deformation equations o L is derived at once.

Okamoto showed that the systems of deformation equations of L
and L are given by P and P} respectively and that the P
(J= VI, I) are the Painlev systems.

Calculations of checking whether L can be deformed become
enormous rapidly as n increases. We want to make the following
conjecture, however"

Conjecture. For every n and J, P is a system of deformation
equations of L and is a system of deformation equations of .

We have only the ollowing partial answer to the conjecture.
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Theorem 3. For n=2, 3 and J=VI, ..., I, the conjecture is true.
The conjecture is also true for n=4, 5 and J= I.
We have rom Theorems 1-3 the ollowing commutative diagrams

or n 1, 2, 3

[1]

[2]

[3]

[4]

[5]

[6]

[7]
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