84. On the Neighbourhood of a Hopf Surface

By Hajime Tsuji

Department of Mathematics, Tokyo Metropolitan University (Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1981)

O. Introduction. Let S be a non-singular compact complex surface imbedded in a complex manifold of dimension 3. As a differentiable manifold, the structure of the tubular neighbourhood of S is determined by its normal bundle. But, in general, the complex analytic structure of the tubular neighbourhood of S cannot be determined by the normal bundle.

In this note we shall state theorems on the complex analytic structure of the tubular neighbourhood of a Hopf surface imbedded in a complex manifold of dimension 3. In this case pseudoconvexity of the domain of holomorphy and the Silov boundary of the domain in C^2 play essential roles. Such circumstance cannot occur in case of the tubular neighbourhood of a compact complex curve imbedded in a complex surface.

1. Statement of results. Definition 1.1. A non-singular compact complex surface is called a Hopf surface, if its universal covering surface is biholomorphic to C^2-O (O is the origin of C^2). If moreover the fundamental group of a Hopf surface is an infinite cyclic group, we call the surface a primary Hopf surface.

The following facts are well-known ([3]).

(a) Every primary Hopf surface has the following normal form: $S_{\alpha_1\alpha_2\lambda} = C^2 - O/\langle g \rangle, \qquad g(z_1, z_2) = (\alpha_1 z_1 + \lambda z_2^m, \alpha_2 z_2),$

where $\langle g \rangle$ denotes the group of automorphisms of C^2-O generated by g, (z_1,z_2) denote the standard coordinates of C^2 and $\alpha_i \in C^*$ (i=1,2), $\lambda \in C$, $m \in Z^+$ satisfying $0 < |\alpha_1| \le |\alpha_2| < 1$, $(\alpha_1 - \alpha_2^m) = 0$. If $\lambda_1, \lambda_2 \ne 0$, then $S_{\alpha_1 \alpha_2 \lambda_1}$ and $S_{\alpha_1 \alpha_2 \lambda_2}$ are biholomorphic to each other.

(b) For every Hopf surface S, we have

$$H^{1}(S, \mathcal{O}) \cong H^{1}(S, C) \cong C,$$

 $H^{1}(S, \mathcal{O}^{*}) \cong H^{1}(S, C^{*}) \cong C^{*}.$

The second isomorphism implies that every complex line bundle over S is flat. In particular every line bundle over $S_{\alpha_1\alpha_2\lambda}$ has the following form:

(1.1) $p:L(c)\to S_{\alpha_1\alpha_2\lambda}$, $L(c)=C\times (C^2-O)/\langle h\rangle$, where h denotes the group of automorphisms of $C\times (C^2-O)$ generated by $h(s,z_1,z_2)=(cs,\alpha_1z_1+\lambda z_2^m,\alpha_2z_2)$, $c\in C^*$ $((s,z_1,z_2)$ denote the standard coordinates of C^3) and the projection p is defined by $p([s,z_1,z_2])=([z_1,z_2])$ ([] denotes the

class in the quotient space).

Definition 1.2. Let L=L(c) be a complex line bundle over a primary Hopf surface $S=S_{\alpha_1\alpha_2\lambda}$. L is said to be of infinite type if there exists no triple of integers (p,q,r) such that $c^r=\alpha_1^p\alpha_2^q$ and either $p,q\geq 0$, r<0 or $p,q\geq 1$, $r\geq 1$. Furthermore if there exists no pair of integers (p,q,r) such that $c^r=\alpha_1^p\alpha_2^q$, $p\geq -1$, $q\geq 0$, r<0 or $p\geq 0$, $q\geq -1$, r<0, or $p\geq 1$, $q\geq 1$, r>0, then L is said to be of strongly infinite type. We denote by |L| the number |c|.

Our theorems are stated as follows.

Theorem 1. Let S be a primary Hopf surface imbedded in a complex manifold M of dimension 3 and let N be the normal bundle of S. If N is of infinite type and |N| < 1, then there exists a multiplicative holomorphic function u defined on some neighbourhood of S with divisor S.

Theorem 2. Let S be a primary Hopf surface imbedded in a complex manifold M of dimension 3. Suppose that the following conditions are satisfied.

- (1) The normal bundle N of S is of strongly infinite type and $|N| \neq 1$.
- (2) [S] is a flat line bundle on some neighbourhood of S in M. Then there exists a tubular neighbourhood of S in M which is biholomorphic to a tubular neighbourhood of the 0-section of N.

Theorem 3. Let S be a primary Hopf surface imbedded in a complex manifold M of dimension 3. Suppose that the following condition is satisfied.

(*) The normal bundle N of S is of strongly infinite type and |N| < 1.

Then there exists a tubular neighbourhood of S on M which is biholomorphic to a tubular neighbourhood of the 0-section of N.

Clearly Theorem 3 follows from Theorems 1 and 2.

- 2. Sketch of proofs. Because the proofs of Theorems 1 and 2 are similar we only sketch the proof of Theorem 1. Let S, N and M be the same as in Theorem 1. We divide the proof of Theorem 1 into three steps.
- Step 1. First we construct special Stein coverings of S, $\mathcal{U} = \{U_i\}_{i=1}^6$ and $\mathcal{U}^* = \{U_i^*\}_{i=1}^6$ satisfying the following conditions.
- (2.1) (1) Every U_i (or U_i^*) is biholomorphic to a Reinhaldt domain in C^2 . U_3 and U_6 contain, respectively, the Silov boundaries of U_4^* , U_5^* , U_6^* and of U_1^* , U_2^* , U_3^* . (2) Each U_i^* contains U_i as a relatively compact subset. (3) $U_1 \cap U_2 \cap U_3 = \phi$, $U_4 \cap U_5 \cap U_6 = \phi$, $U_1^* \cap U_2^* \cap U_3^* = \phi$, $U_4^* \cap U_6^* \cap U_6^* = \phi$. (4) Let U_{ijk} (or U_{ijk}^*) be a complex manifold obtained by gluing the disjoint union of U_i , U_j , U_k (or U_i^* , U_i^* , U_k^*) naturally on

 $U_i \cap U_j$ and $U_j \cap U_k$ (or $U_i^* \cap U_j^*$, $U_j^* \cap U_k^*$) for (i,j,k) = (1,2,3), (4,5,6). Then U_{123} and U_{456} (or U_{123}^* , U_{456}^*) are Stein manifolds. (5) Let W_{ij} be $(U_i^* \cap U_j) \cup (U_i \cap U_j^*)$ for $1 \leq i < j \leq 6$. Then every holomorphic function defined on w_{ij} extends to a holomorphic function defined on a domain W_{ij}^* ($\subset U_i^* \cap U_j^*$) which contains $U_i \cap U_j$ as a relatively compact subset $(1 \leq i < j \leq 6)$, except for (i,j) = (1,2), (2,3), (4,5), (5,6). (For (i,j) = (1,2), (2,3), (4,5), (5,6

To construct such coverings, we use logarithmic convexity of the domain of convergence of a Laurent power series ([2]). Next we construct a Stein covering $CV^* = \{V_i^*\}_{i=1}^6$ of S in M and coordinates (z_i, w_i) : $V_i^* \to C^*$ for each i satisfying the following conditions;

(2.2) (1) V_i^* is a Stein neighbourhood of U_i^* . (2) (z_i, w_i) are defined on the closure of V_i^* . (3) $z_i: V_i^* \to C^2$ is an extension of the coordinate $z_i | U_i^*$ of U_i^* and satisfies $z_i(V_i^*) = z_i(U_i^*)$. (4) $(z_i, w_i) | V_i^* \cap V_j^* = (z_j, w_j) | V_i^* \cap V_j^*$ for (i, j) = (1, 2), (2, 3), (4, 5), (5, 6). (5) $w_i; V_i^* \to C$ is the defining equation of U_i^* in V_i^* , i.e., $U_i^* = \{p \in V_i^* | w_i(p) = 0\}$. (6) w_i/w_j is holomorphic on $V_i^* \cap V_j^*$ and $t_{ij} = w_i/w_j | U_i^* \cap U_j^*$ is a locally constant function on $U_i^* \cap U_j^*$.

To construct such $CV^* = \{V_i^*\}$ and (z_i, w_i) $(1 \le i \le 6)$, we use a result of Y. T. Siu ([5]).

- Step 2. To prove Theorem 1, we must construct a system of holomorphic functions $\{u_i\}_{i=1}^6$ defined respectively on neighbourhoods $V_i'(\subseteq V_i^*)$ of U_i^* satisfying the conditions (i). Each u_i is of the form $u_i(p) = w_i(p) + (\text{terms of order } \geq 2)$ (ii) $u_i = t_{ij}u_j$ on $V_i' \cap V_j'$. We determine each u_i as an implicit function defined by the equation
- (2.3) $w_i = f_i(z_i, u_i) = u_i + \sum_{\nu=2}^{\infty} f_{i|\nu}(z_i) u_i^{\nu}$, where $f_i(z_i, u_i)$ is a power series in u_i whose coefficients $f_{i|\nu}(z_i)$ are holomorphic functions of the variable z_i . To construct f_i as a formal power series we use entirely the same method as in [6]. The ν -th obstruction $-h_{ij|\nu+1}$ to construct the formal power series is an element to $Z^1(U^*, \mathcal{O}(N^{-\nu}))$ and $f_{i|\nu+1}$ is determined by the equation
 - $(2.4) \quad f_{i|\nu+1}(z_i) t_{ij}^{-\nu} f_{j|\nu+1}(z_j) = -h_{ij|\nu+1}(z_i) \text{ on } U_i^* \cap U_j^*.$

The following lemma completes the construction of the formal power series.

Lemma. dim $H^1(S, \mathcal{O}(L^{-\nu})) = 0$ for $\nu \in \mathbb{Z}^+$ if L is a complex line bundle of infinite type over S.

- Step 3. To prove that each f_i has a positive radius of convergence, we estimate $f_{i|\nu}$ by $f_{i|\nu} \cdots f_{i|\nu-1}$. Our estimate proceeds as follows.
 - (1) Estimate of $-h_{ij|\nu}$ on W_{ij} .

- (2) Estimate of $f_{i|\nu}$ on U_i .
- (3) Estimate of $f_{i|\nu}$ on U_i^* .
- (1) is the estimate of the same type as in [6]. But we use a special norm on $Z^1(U^*, \mathcal{O}(N^{-\nu}))$. (2) is obtained from (1) by using a similar method to in [1] and (2.2) (5). We note that $\{-h_{ij|\nu}\}=0$ for (i,j)=(1,2), (2,3), (4,5), (5,6) by the construction of coordinates. (3) is obtained from the equation (2.4) and arguments on the Silov boundary of U_i^* .

Using these estimates we can prove that each f_i has a positive radius of convergence.

References

- [1] Enoki, I.: On Surfaces of Class VII₀ with curves. Master Thesis, Tokyo University (1981).
- [2] Gunning, R. C., and Rossi, H.: Analytic functions of several complex variables. Prentice-Hall, Eaglewood Cliffs, N. J. (1965).
- [3] Kodaira, K.: On the structure of compact complex analytic surfaces II. Amer. J. Math., 88, 682-721 (1966); ditto. III. ibid., 90, 55-83 (1968).
- [4] Kodaira, K., and Spencer, D. C.: A theorem of completeness for complex analytic fibre spaces. Acta Math., 100, 281-294 (1958).
- [5] Siu, Y. T.: Every Stein subvariety admits a Stein neighbourhood. Invent. Math., 38, 88-100 (1976).
- [6] Ueda, T.: On the neighbourhood of a compact complex curve with topologically trivial normal bundle (preprint).