83. A Remark on the Boundary Behavior of Quasiconformal Mappings and the Classification of Riemann Surfaces

By Hiroshige SHIGA Kyoto Sangyo University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1981)

1. Generally, a property of open Riemann surfaces is not always preserved by a quasiconformal mapping. For example, the class O_{AB} , the class of Riemann surfaces on which there exists no non-constant bounded analytic function, is not quasicomformally invariant (cf. [1], [3]). In this paper, we shall study properties of Riemann surfaces which are not preserved by quasiconformal mappings.

Let R_1, R_2 be open Riemann surfaces and $f: R_1 \rightarrow R_2$ be a quasiconformal mapping. The main purpose of this paper is to construct the counter examples for the following problems.

I. Suppose that R_j (j=1,2) are hyperbolic, that is, R_j have Green's functions $g_j(\cdot, p_j)$ with poles at $p_j \in R_j$. Are the Green's functions quasi-invariant? Precisely, dose the following inequality

 $g_1(z, p_1) \leq M g_2(f(z), f(p_1))$

hold for any point z on R_1 and a constant M(>0) not depending on z? II. Suppose R_1 is in *Widom class* (cf. [5]), that is, R_1 is hyperbolic

and for each point $p_1 \in R_1$,

 $\int_0^\infty \beta(t:p_i)dt < +\infty,$

where $\beta(t:p_1)$ is the first Betti number of $\{p \in R_1: g_1(p, p_1) > t\}$. Is R_2 also in Widom class?

III. Let R_1 and R_2 be not in O_{AB} . Suppose that R_1 is AB-separable, that is, for any points $p, q \in R_1$ $(p \neq q)$ there is a bounded analytic function g such that $g(p) \neq g(q)$. Is R_2 also AB-separable?

Finally in §4, we shall give a theorem concerning with Problems II and III.

2. First of all, we recall the following proposition due to A. Beurling and L. Ahlfors (cf. [1], [2]).

Proposition. There exists a quasiconformal automorphism of the upper half plane with the boundary function h(x) $(x \in \mathbf{R})$ if and only if

(1)
$$\rho^{-1} \leq \frac{h(x+t) - h(x)}{h(x) - h(x-t)} \leq \rho$$

for some constant $\rho \geq 1$ and for all x and $t(\neq 0)$.

Actually, if (1) is satisfied there exists a mapping whose maximal dilatation $\leq \rho^2$. For instance, this mapping is given by

(2)
$$\tilde{f}(z) = \frac{1}{2y} \int_{-y}^{y} h(x+s)ds + i\frac{r_h}{2y} \int_{0}^{y} (h(x+s) - h(x-s))ds$$

with z=x+iy, y>0 and a certain constant $r_h>0$.

We consider a function $h(x) = x^3$ on the real axis. It is easy to show that h(x) satisfies (1) for some ρ . Hence h(x) is the boundary function of a quasiconformal mapping \tilde{f} defined by (2).

Since $\tilde{f}(iy) = ir_h y^s/4$, we can choose a sequence $\{y_n\}_1^{\infty}$ $(y_n > 0)$ such that $\sum_{n=1}^{\infty} y_n = +\infty$ and $-i \sum_{n=1}^{\infty} \tilde{f}(iy_n) < +\infty$. Composing \tilde{f} with a conformal mapping from the upper half plane onto the unit disk D, we verify that there are a quasiconformal automorphism F on D and a sequence $\{z_n\}_1^{\infty}$ $(|z_n| < 1)$ such that

(3)
$$\sum_{n=1}^{\infty} \log |z_n| = -\infty$$
 and $\sum_{n=1}^{\infty} \log |F(z_n)| > -\infty$.

Since $-\log |z|$ is the Green's function of D with a pole at the origin, this gives a counter example for Problem I.

Further, from (3) we have:

Corollary. The zeros of a bounded analytic function on D are not preserved by a quasiconformal mapping.

3. To construct a counter example for Problems II and III, we take a sequence $\{z_n\}_1^{\infty}$ $(0 < z_n < 1, n = 1, 2, \cdots)$ satisfying the condition (3). Put $W = D - \bigcup_{n=1}^{\infty} [z_{2n-1}, z_{2n}]$, and we construct a two-sheeted covering surface R_2 from two copies W_1, W_2 of W, by identifying the upper and the lower edges crosswise along $\bigcup_{n=1}^{\infty} [z_{2n-1}, z_{2n}]$. And we consider a quasiconformal mapping \hat{F} on R_2 whose projection is F in §2. Put $\hat{F}(R_2) = R_1$ and $\hat{F}^{-1} = f$, then R_1 is also a *two*-sheeted covering surface.

On the other hand, from (3) and a theorem of C. M. Stanton [4] R_1 is in Widom class and AB-separable but R_2 is not in Widom class and not AB-separable. Hence (R_1, R_2, f) is a desired counter example for Problems II and III.

4. For each t > 0 we consider $h_t(x) = x | x|^t$. Then $h_t(x)$ satisfies (1) for some ρ_t , and we can take $1 \le \rho_t \le (\sqrt{2} + 1)^{2t}$ (cf. [2, p. 133]). Therefore, from Proposition in §2, we can find a sequence $\{\tilde{f}_t\}_{t>0}$ of quasiconformal automorphisms of the upper half plane such that $\lim_{t \ge 0} K(\tilde{f}_t) = 1$ where $K(\tilde{f}_t)$ is a maximal dilatation of \tilde{f}_t . And \tilde{f}_t is defined by (2) with h_t instead of h and with r_t instead of r_h .

Then we have $\tilde{f}_i(iy) = ir_i y^{1+i}/(2+t)$. Hence by the same argument as in §§ 2 and 3, we have the following:

Theorem. There exist a sequence $\{R_t\}_{t\geq 0}$ of Riemann surfaces and quasiconformal mappings $f_t: R_0 \rightarrow R_t$ with $\lim_{t \geq 0} K(f_t) = 1$ such that R_0 is not in Widom class and not AB-separable, but all $R_t(t>0)$ are in Widom class and AB-separable.

No. 7]

H. Shiga

References

- Ahlfors, L. V.: Lectures on Quasiconformal Mappings. Van Vostrand, New York (1966).
- [2] Beurling, A., and Ahlfors, L.: The boundary correspondence under quasiconformal mappings. Acta Math., 96, 125-142 (1956).
- [3] Sario, L., and Nakai, M.: Classification Theory of Riemann Surfaces. Springer-Verlag, Berlin (1970).
- [4] Stanton, C. M.: Bounded analytic functions on a class of Riemann surfaces. Pacific J. Math., 59, 557-565 (1975).
- [5] Widom, H.: H^p sections of vector bundles over Riemann surfaces. Ann. of Math., 94(2), 304-324 (1971).