98. On Unramified $SL_2(F_p)$ Extensions of an Algebraic Function Field of Genus 2

By Hidenori KATSURADA

Department of Mathematics, Muroran Institute of Technology

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1981)

Let k be an algebraically closed field of characteristic p. Let K be an algebraic function field over k. In [1], we calculated the number of unramified $SL_2(F_4)$ extensions of some algebraic function field of characteristic 2. In this note, we obtain the best possible estimation of the number of unramified Galois extensions of K whose Galois groups are isomorphic to $SL_2(F_p)$ when $p \ge 5$ and the genus of K is 2. Detailed accounts will be published elsewhere.

Definition 1. For any system $(m_1, \dots, m_r; n_1, \dots, n_s)$ of integers such that $m_1 = n_1$, we define the number $N(m_1, \dots, m_r; n_1, \dots, n_s)$ inductively as follows:

(1) When r=s, we define

$$N(m_1, \cdots, m_r; n_1, \cdots, n_r) = \sum_{i=1}^r m_i + \sum_{i=1}^r n_i - rm_i.$$

(2) When r < s, first we define

 $N(m_1, n_1, \cdots, n_s) = n_1 \cdots n_s.$

Assume that for $(m_1, \dots, m_r; n_1, \dots, n_{s-1})$ and $(m_1, \dots, m_{r-1}; n_1, \dots, n_{s-1})$ the number $N(\dots)$ is defined. Then we define

$$N(m_1, \dots, m_r; n_1, \dots, n_s) = (m_r + n_s - m_1)N(m_1, \dots, m_r; n_1, \dots, n_{s-1}) + N(m_1, \dots, m_{r-1}; n_1, \dots, n_{s-1}).$$

(3) When r > s, we define

 $N(m_1, \cdots, m_r; n_1, \cdots, n_s) = N(n_1, \cdots, n_s; m_1, \cdots, m_r).$

Let K be the maximum unramified Galois extension of K. We put $q = p^m$, where m is a natural number. We denote by Irr (Gal (\tilde{K}/K) , $SL_2(F_q)$) the set of $GL_2(k)$ equivalence classes of 2-dimensional irreducible representations of Gal (\tilde{K}/K) whose images are isomorphic to subgroups of $SL_2(F_q)$. Let ρ be a representative of an element of Irr (Gal $(\tilde{K}/K), SL_2(F_p)$). Then we note that the order $\sharp \rho$ (Gal (\tilde{K}/K)) is prime to p if ρ (Gal (\tilde{K}/K)) $\subseteq SL_2(F_p)$. Hence to estimate the number of unramified $SL_2(F_p)$ extensions of K, it suffices to estimate

#Irr (Gal (\tilde{K}/K), $SL_2(F_p)$).

Theorem 1. We put

$$A = N(p + \overbrace{1, \cdots, p}^{p+2} + 1, p, \overbrace{\cdots, p}^{p-3}; p + \overbrace{1, \cdots, p}^{p} + 1, p, \overbrace{\cdots, p}^{p+1})$$

$$\begin{split} B = & N(p + \overbrace{1, \cdots, p}^{p-1} + 1, p, \overbrace{\cdots, p}^{p}; p + \overbrace{1, \cdots, p}^{p+3} + 1, p, \overbrace{\cdots, p}^{p-2}) \\ C = & N(p + \overbrace{1, \cdots, p}^{(p+3)/2} + 1, p, \overbrace{\cdots, p}^{(p-5)/2}; p + \overbrace{1, \cdots, p}^{(p-1)/2} + 1, p, \overbrace{\cdots, p}^{(p+3)/2}) \\ D = & N(p + \overbrace{1, \cdots, p}^{(p-3)/2} + 1, p, \overbrace{\cdots, p}^{(p+1)/2}; p + \overbrace{1, \cdots, p}^{(p+5)/2} + 1, p, \overbrace{\cdots, p}^{(p-3)/2}) \\ D = & N(p + \overbrace{1, \cdots, p}^{(p+1)/2} + 1, p, \overbrace{\cdots, p}^{(p+5)/2}; p + \overbrace{1, \cdots, p}^{(p-3)/2} + 1, p, \overbrace{\cdots, p}^{(p-3)/2}) \\ We assume that p \ge 5. \quad Then we have \\ (*) & & \sharp Irr (Gal (\tilde{K}/K), SL_2(F_p))) \\ & \le (A + B - 6C - 6D)/2 - ((p+1)^4 + (p-1)^4)/2. \end{split}$$

Next we look for a condition under which the equality holds in (*) of Theorem 1.

Let P_{∞} be a Weierstrass point of K. Let $\{u_i\}$ be a basis of $L(P_{\infty}^{p-1}) = \{u \in K; (u) \ge P_{\infty}^{1-p}\}$. Let K_A be the adele ring of K. We put for any divisor Q,

 $K_A(Q) = \{b \in K_A \text{ such that } \nu_P(b) \ge -\nu_P(Q) \text{ for any prime } P \text{ of } K\}.$ Let $\{y_i\}_{1 \le i \le 3}$ (resp. $\{z_i\}_{1 \le i \le p+2}$) be a set of elements of K_A such that

 $\{y_i \mod K_A(P_{\infty}^{-2}) + K\}$ (resp. $\{z_i \mod K_A(P_{\infty}^{-p-1}) + K\}$)

be a basis of $H^1(P_{\infty}^{-2}) = K_A/(K_A(P_{\infty}^{-2}) + K)$ (resp. $H^1(P_{\infty}^{-p-1})$).

Then for i=1, 2, 3, there is a (p-2, p+2) matrix (c_{ijk}) of $M_{p-2, p+2}(k)$ such that

$$u_j y_i^p = \sum_{k=1}^{p+2} c_{ijk} z_k \mod K_A(P_{\infty}^{-p-1}) + K.$$

We put $a_{jk} = \sum_{i=1}^{3} c_{ijk} X_i^p$, where X_i are indeterminates. We put $F = (a_{jk})$. For any element $(x_1, x_2, x_3) \in k^3$, we denote by $F(x_1, x_2, x_3)$ the (p-2, p+2) matrix of $M_{p-2, p+2}(k)$ substituting x_i for X_i in F. Then $\mathfrak{F} = \{(x_1, x_2, x_3) \in P^2(k) ; \operatorname{rank}_k F(x_1, x_2, x_3) \leq p-3\}$

defines a 0-dimensional closed subset of $P^2(k)$.

We note that \mathcal{F} is uniquely determined (up to isomorphism of $P^{2}(k)$) only by K. Then

Theorem 2. In (*) of Theorem 1, the equality holds if and only if \mathcal{F} is an empty set.

Remark. The geometrical meaning of the condition that \mathcal{F} is empty is as follows.

Let C be a complete nonsingular model of K over k. Let L_{∞}^{-1} be the line bundle of C of degree 1 which corresponds to a divisor P_{∞}^{-1} . Let f be a Frobenius map of C. Then " \mathcal{F} is empty" means that for any stable vector bundle V of rank 2 such that

 $0 \longrightarrow L_{\infty}^{-1} \longrightarrow V \longrightarrow L_{\infty} \longrightarrow 0,$

 f^*V is always stable.

Reference

[1] H. Katsurada: On unramified $SL_2(F_4)$ extensions of an algebraic function field. Proc. Japan Acad., 56A, 36–39 (1980).

No. 8]