98. On Unramified $\mathrm{SL}_{2}\left(\mathrm{~F}_{p}\right)$ Extensions of an Algebraic Function Field of Genus 2

By Hidenori Katsurada
Department of Mathematics, Muroran Institute of Technology
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1981)

Let k be an algebraically closed field of characteristic p. Let K be an algebraic function field over k. In [1], we calculated the number of unramified $S L_{2}\left(F_{4}\right)$ extensions of some algebraic function field of characteristic 2. In this note, we obtain the best possible estimation of the number of unramified Galois extensions of K whose Galois groups are isomorphic to $S L_{2}\left(F_{p}\right)$ when $p \geqq 5$ and the genus of K is 2. Detailed accounts will be published elsewhere.

Definition 1. For any system ($m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s}$) of integers such that $m_{1}=n_{1}$, we define the number $N\left(m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s}\right)$ inductively as follows:
(1) When $r=s$, we define

$$
N\left(m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{r}\right)=\sum_{i=1}^{r} m_{i}+\sum_{i=1}^{r} n_{i}-r m_{1} .
$$

(2) When $r<s$, first we define

$$
N\left(m_{1}, n_{1}, \cdots, n_{s}\right)=n_{1} \cdots n_{s} .
$$

Assume that for ($m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s-1}$) and ($m_{1}, \cdots, m_{r-1} ; n_{1}, \cdots, n_{s-1}$) the number $N(\cdots)$ is defined. Then we define

$$
\begin{aligned}
N\left(m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s}\right)= & \left(m_{r}+n_{s}-m_{1}\right) N\left(m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s-1}\right) \\
& +N\left(m_{1}, \cdots, m_{r-1} ; n_{1}, \cdots, n_{s-1}\right) .
\end{aligned}
$$

(3) When $r>s$, we define

$$
N\left(m_{1}, \cdots, m_{r} ; n_{1}, \cdots, n_{s}\right)=N\left(n_{1}, \cdots, n_{s} ; m_{1}, \cdots, m_{r}\right) .
$$

Let K be the maximum unramified Galois extension of K. We put $q=p^{m}$, where m is a natural number. We denote by $\operatorname{Irr}(\operatorname{Gal}(\tilde{K} / K)$, $S L_{2}\left(F_{q}\right)$) the set of $G L_{2}(k)$ equivalence classes of 2-dimensional irreducible representations of $\operatorname{Gal}(\tilde{K} / K)$ whose images are isomorphic to subgroups of $S L_{2}\left(F_{q}\right)$. Let ρ be a representative of an element of $\operatorname{Irr}\left(\operatorname{Gal}(\tilde{K} / K), S L_{2}\left(F_{p}\right)\right)$. Then we note that the order $\# \rho(\operatorname{Gal}(\tilde{K} / K))$ is prime to p if $\rho(\operatorname{Gal}(\tilde{K} / K)) \subsetneq S L_{2}\left(F_{p}\right)$. Hence to estimate the number of unramified $S L_{2}\left(F_{p}\right)$ extensions of K, it suffices to estimate

$$
\# \operatorname{Irr}\left(\operatorname{Gal}(\tilde{K} / K), S L_{2}\left(F_{p}\right)\right) .
$$

Theorem 1. We put

$$
A=N(p+\overbrace{1, \cdots, p}^{p+2}+1, \overbrace{p, \cdots, p}^{p-3} ; p+\overbrace{1, \cdots, p}^{p}+1, \overbrace{p, \cdots, p}^{p+1})
$$

$$
\begin{aligned}
& B=N(p+\overbrace{1, \cdots, p}^{p-1}+1, \overbrace{p, \cdots, p}^{p} ; p+\overbrace{1, \cdots, p}^{p+3}+1, \overbrace{p, \cdots, p}^{p-2}) \\
& C=N(p+\overbrace{1, \cdots, p}^{(p+3) / 2}+1, \overbrace{p, \cdots, p}^{(p-5) / 2} ; p+\overbrace{1, \cdots, p}^{(p-1) / 2}+1, \overbrace{p, \cdots, p}^{(p+3) / 2}) \\
& D=N(p+\overbrace{1, \cdots, p}^{(p-3) / 2}+1, p, \cdots, p ; p+\overbrace{1, \cdots, p}^{(p+5) / 2}+1, \overbrace{p, \cdots, p}^{(p-3) / 2})
\end{aligned}
$$

We assume that $p \geqq 5$. Then we have

$$
\begin{aligned}
* & \# \operatorname{Irr}\left(\operatorname{Gal}(\tilde{K} / K), S L_{2}\left(F_{p}\right)\right) \\
& \leqq(A+B-6 C-6 D) / 2-\left((p+1)^{4}+(p-1)^{4}\right) / 2 .
\end{aligned}
$$

Next we look for a condition under which the equality holds in (*) of Theorem 1.

Let P_{∞} be a Weierstrass point of K. Let $\left\{u_{i}\right\}$ be a basis of $L\left(P_{\infty}^{p-1}\right)=\left\{u \in K ;(u) \geqq P_{\infty}^{1-p}\right\}$. Let K_{A} be the adele ring of K. We put for any divisor Q,
$K_{A}(Q)=\left\{b \in K_{A}\right.$ such that $\nu_{P}(b) \geqq-\nu_{P}(Q)$ for any prime P of $\left.K\right\}$.
Let $\left\{y_{i}\right\}_{1 \leq i \leq 2}\left(\right.$ resp. $\left.\left\{z_{i}\right\}_{1 \leq i \leq p+2}\right)$ be a set of elements of K_{A} such that
$\left\{y_{i} \bmod K_{A}\left(P_{\infty}^{-2}\right)+K\right\} \quad\left(\right.$ resp. $\left.\left\{z_{i} \bmod K_{A}\left(P_{\infty}^{-p-1}\right)+K\right\}\right)$
be a basis of $H^{1}\left(P_{\infty}^{-2}\right)=K_{A} /\left(K_{A}\left(P_{\infty}^{-2}\right)+K\right)\left(r e s p . H^{1}\left(P_{\infty}^{-p-1}\right)\right)$.
Then for $i=1,2,3$, there is a $(p-2, p+2)$ matrix $\left(c_{i j k}\right)$ of $M_{p-2, p+2}(k)$ such that

$$
u_{j} y_{i}^{p}=\sum_{k=1}^{p+2} c_{i j k} z_{k} \quad \bmod K_{A}\left(P_{\infty}^{-p-1}\right)+K .
$$

We put $a_{j k}=\sum_{i=1}^{3} c_{i j k} X_{i}^{p}$, where X_{i} are indeterminates. We put $F=\left(\alpha_{j k}\right)$. For any element $\left(x_{1}, x_{2}, x_{3}\right) \in k^{3}$, we denote by $F\left(x_{1}, x_{2}, x_{3}\right)$ the ($p-2, p+2$) matrix of $M_{p-2, p+2}(k)$ substituting x_{i} for X_{i} in F. Then

$$
\mathscr{F}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in P^{2}(k) ; \operatorname{rank}_{k} F\left(x_{1}, x_{2}, x_{3}\right) \leqq p-3\right\}
$$

defines a 0 -dimensional closed subset of $P^{2}(k)$.
We note that \mathscr{F} is uniquely determined (up to isomorphism of $P^{2}(k)$) only by K. Then

Theorem 2. In (*) of Theorem 1, the equality holds if and only if \mathscr{F} is an empty set.

Remark. The geometrical meaning of the condition that \mathscr{F} is empty is as follows.

Let C be a complete nonsingular model of K over k. Let L_{∞}^{-1} be the line bundle of C of degree 1 which corresponds to a divisor P_{∞}^{-1}. Let f be a Frobenius map of C. Then " \mathcal{F} is empty" means that for any stable vector bundle V of rank 2 such that

$$
0 \longrightarrow L_{\infty}^{-1} \longrightarrow V \longrightarrow L_{\infty} \longrightarrow 0,
$$

$f^{*} V$ is always stable.

Reference

[1] H. Katsurada: On unramified $S L_{2}\left(F_{4}\right)$ extensions of an algebraic function field. Proc. Japan Acad., 56A, 36-39 (1980).

