108. Fourier Transforms of Nilpotently Supported Invariant Functions on a Finite Simple Lie Algebra^{*)}

By Noriaki KAWANAKA

Department of Mathematics, Osaka University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1981)

0. Let ⁽⁶⁾ be a connected simple algebraic group defined over a finite field $k = F_q$, and let $g = \text{Lie}(\mathfrak{G})$, the Lie algebra of \mathfrak{G} . We denote by σ the Frobenius morphism, and by G (resp. g) the set \mathfrak{G}_{σ} (resp. \mathfrak{g}_{σ}) of σ -fixed points of \mathfrak{G} (resp. g). Let $\operatorname{Inv}(g)$ be the space of *C*-valued Ad (G)-invariant functions on g and $Inv(g_0)$ the subspace of Inv(g)consisting of all $f \in Inv(g)$ supported by the set g_0 of nilpotent elements of g. In §2, we introduce an operation $f \rightarrow f^{\uparrow}$ for $f \in \text{Inv}(g)$, and in § 3, we define the 'Fourier transform' $\mathcal{F}(f)$ for $f \in \text{Inv}(g_0)$. The main result (Theorem 3) of this paper says that these two operations coincide with each other on a relatively large subspace $Inv(g_0)'$ of $Inv(g_0)$, if the characteristic of k is not too small. As a corollary, we can prove orthogonality relations (Cor. 2) for $\{\mathcal{F}(\mathbf{1}_{o_s})\}_o$, where O runs over the set of σ -stable nilpotent Ad((\mathfrak{G})-orbits in g and $\mathbf{1}_{o_{\sigma}}$ is the characteristic function of O_{σ} . This can be considered as a counterpart to a result [7, 5.6] of T.A. Springer. (He treated the case of strongly regular (semisimple) orbits rather than nilpotent orbits.) At the end of the paper we present a curious fact (Theorem 4) on the distribution of nilpotent elements in g. Although this result is not directly related to our main results, Theorem 4 and Corollaries 1, 2 show that the variety g_0 of nilpotent elements of g sometimes looks like a 2N-dimensional vector subspace of g, where $2N = \dim \mathfrak{g}_0$.

Details and proofs are omitted and will be published elsewhere.

Acknowledgement. In 1977, G. Lusztig conjectured Theorem 1 in a private conversation with the author. The author would like to express his hearty thanks to G. Lusztig for sharing precious ideas.

1. Let \mathfrak{B} be a σ -stable Borel subgroup of \mathfrak{G} and \mathfrak{T} a σ -stable maximal torus contained in \mathfrak{B} . Put $B = \mathfrak{B}_{\sigma}$ and $N(\mathfrak{T}) =$ the normalizer of \mathfrak{T} in \mathfrak{G} . Then $(G, B, N(\mathfrak{T})_{\sigma})$ is a Tits system with the Weyl group $W = N(\mathfrak{T})_{\sigma}/\mathfrak{T}_{\sigma}$. Let (W, R) be the associated Coxeter system. Then, to each $J \subset R$, there corresponds a σ -stable parabolic subgroup \mathfrak{P}_{J} of

^{*)} This research was supported in part by Grant-in-Aid for Scientific Research.

N. KAWANAKA

(b) containing \mathfrak{B} . Let \mathfrak{B}_J be the unipotent radical of \mathfrak{B}_J . Put $P_J = (\mathfrak{B}_J)_{\sigma}$, $V_J = (\mathfrak{B}_J)_{\sigma}$, $p_J = \text{Lie}(\mathfrak{B}_J)_{\sigma}$ and $v_J = \text{Lie}(\mathfrak{B}_J)_{\sigma}$.

If \mathfrak{H} is a σ -stable algebraic subgroup of \mathfrak{G} , $H = \mathfrak{H}_{\sigma}$ and $h = \operatorname{Lie}(\mathfrak{H})_{\sigma}$, we denote by Inv(H) (resp. Inv(h)) the space of *C*-valued class functions on H (resp. Ad(H)-invariant functions on h) with the inner product

$$\langle f_1, f_2 \rangle_H = |H|^{-1} \sum_{x \in H} f_1(x) \overline{f_2(x)} \qquad (f_i \in \operatorname{Inv}(H))$$
(resp. $\langle f_1, f_2 \rangle_h = |H|^{-1} \sum_{x \in h} f_1(x) \overline{f_2(x)} \qquad (f_i \in \operatorname{Inv}(h))).$

Imitating the definition of the inducing map $\operatorname{ind}_{H}^{G}$: $\operatorname{Inv}(H) \to \operatorname{Inv}(G)$, we define the inducing map $\operatorname{ind}_{h}^{g}$: $\operatorname{Inv}(h) \to \operatorname{Inv}(g)$ by

$$\operatorname{ind}_{h}^{g}(f)(A) = |H|^{-1} \sum_{x \in G, \operatorname{Ad}(x)A \in h} f(\operatorname{Ad}(x)A)$$
for $f \in \operatorname{Inv}(h)$ and $A \in g$.

2. Let J be a subset of R. For $f \in \text{Inv}(G)$ (resp. $f \in \text{Inv}(g)$), we define an element f_J of $\text{Inv}(P_J)$ (resp. $\text{Inv}(p_J)$) by

$$\begin{array}{ll} f_J(x) = |V_J|^{-1} \sum_{y \in V_J} f(xy) & (x \in P_J) \\ (\text{resp. } f_J(X) = |V_J|^{-1} \sum_{Y \in v_J} f(X+Y) & (X \in p_J)). \end{array}$$

Then

$$\begin{split} f^{*} &= \sum_{J \subset R} (-1)^{|J|} \operatorname{ind}_{P_{J}}^{g} (f_{J}) \\ (\text{resp. } f^{*} &= \sum_{J \subset R} (-1)^{|J|} \operatorname{ind}_{p_{J}}^{g} (f_{J})) \end{split}$$

is again an element of Inv(G) (resp. Inv(g)).

Theorem 1. (i) $(f^{\uparrow})^{\uparrow} = f$ for any $f \in \text{Inv}(G)$ (resp. Inv(g)).

(ii) $\langle f_1, f_2 \rangle_G = \langle f_1^{\wedge}, f_2^{\wedge} \rangle_G$ (resp. $\langle f_1, f_2 \rangle_g = \langle f_1^{\wedge}, f_2^{\wedge} \rangle_g$) for any $f_1, f_2 \in$ Inv(G) (resp. Inv(g)).

(iii) Suppose that f is an irreducible character of G. Then f^{\uparrow} or $-f^{\uparrow}$ is an irreducible character.

Remark. This has also been proved by D. Alvis [1] independently. See also Curtis [2] and Deligne-Lusztig [3].

3. From now on we need the following:

Assumption 1. The characteristic p of k is good ([9, p. 178]) for \mathfrak{G} . If \mathfrak{G} is of type A_l and p devides l+1, we also assume that \mathfrak{G} is simply connected, i.e., $\mathfrak{G} \cong SL_n$ over \overline{k} .

Let $\kappa(,)$ be a symmetric, Ad (S)-invariant bilinear form on g defined over k. If S is not of type A_i , we take $\kappa(,)$ to be non-degenerate. If S is of type A_i , we put

 $\kappa(X, Y) = \text{Trace } XY$ $(X, Y \in g = sl_n).$ (See [9, p. 184].)

Let g_0 and $\operatorname{Inv}(g_0)$ be as in § 0. For $f \in \operatorname{Inv}(g_0)$, the (modified) Fourier transform $\mathcal{F}(f)$ ($\in \operatorname{Inv}(g_0)$) is defined by

$$\mathcal{F}(f)(X) = \begin{cases} q^{-N} \sum_{Y \in g_0} \chi(\kappa(X^*, Y)) f(Y) & (X \in g_0); \\ 0 & (X \in g \setminus g_0), \end{cases}$$

where χ is a non-trivial additive character of $k, X \rightarrow X^*$ is an opposition automorphism of g (which acts as -1 on the root system of g) and $N = 1/2 (\dim g_0) =$ the number of positive roots of \mathfrak{G} .

462

No. 9] Fourier Transforms on a Finite Simple Lie Algebra

Remark. Usually (see e.g. [8]) the Fourier transform F(f) of a function f on g is defined by

 $F(f)(X) = q^{-1/2 \operatorname{(dim } g)} \sum_{Y \in g} \chi(\kappa(X, Y)) f(Y) \qquad (X \in g).$

4. Let \mathfrak{N} be a σ -stable subgroup of \mathfrak{B}_{ϕ} (=the unipotent radical of \mathfrak{B}) normalized by \mathfrak{B} , and let $n = \text{Lie}(\mathfrak{N})_{\sigma}$. We denote by $\text{Inv}(g_0)'$ the subspace of $\text{Inv}(g_0)$ spanned by all elements of the form $\text{ind}_n^{\sigma}(1_n)$ for various \mathfrak{N} . In the proofs of Theorems 2 and 3 below we use a classification theorem of nilpotent orbits due to Dynkin [4], Kostant [6] and Springer-Steinberg [9]. The following assumption is made just for this reason.

Assumption 2. If \mathfrak{G} is of type $E_{\mathfrak{g}}, E_{\mathfrak{g}}, E_{\mathfrak{g}}, F_{\mathfrak{g}}$ or $G_{\mathfrak{g}}$, we assume that $p \geq 4m+3$, where *m* is the height of the highest root of \mathfrak{G} . (If *G* is of type $A_{\mathfrak{g}}, B_{\mathfrak{g}}, C_{\mathfrak{g}}$ or $D_{\mathfrak{g}}$, Assumption 1 above is already sufficient.)

Remark. It is almost certain that the restrictions on p for exceptional groups are too strong.

Theorem 2. For $A \in g_0$, we denote by O(A) the Ad (\mathfrak{G})-orbit of A, and by $\mathbf{1}_{O(A)_{\mathfrak{g}}}$ the characteristic function of $O(A)_{\mathfrak{g}}$.

(i) Let $f \in \operatorname{Inv}(g_0)'$ and $A \in g_0$. Then $f \cdot 1_{O(A)_g} \in \operatorname{Inv}(g_0)'$.

(ii) $1_{O(A)_{\sigma}} \in \operatorname{Inv}(g_0)'$ for any $A \in g_0$.

5. Theorem 3. $f^* = \mathcal{F}(f)$ for any $f \in \text{Inv}(g_0)'$.

Remark. As can be easily seen from the case that $\mathfrak{G}=SL_2$ and $p\neq 2$, one can not replace $\operatorname{Inv}(g_0)'$ with $\operatorname{Inv}(g_0)$ in Theorem 3.

Combining Theorems 1 and 3, we get:

Corollary 1. (i) $\mathcal{F}(\mathcal{F}(f)) = f$ for any $f \in \text{Inv}(g_0)'$.

(ii) $\langle f_1, f_2 \rangle_g = \langle \mathcal{F}(f_1), \mathcal{F}(f_2) \rangle_g$ for any $f_1, f_2 \in \operatorname{Inv}(g_0)'$.

By Theorem 2 (ii), we have the following orthogonality relations as a special case of Corollary 1 (ii).

Corollary 2. Let $A, A' \in g_0$. Then

$$\sum_{X \in g_0} \mathcal{F}(\mathbf{1}_{o(A)_{\sigma}})(X) \mathcal{F}(\mathbf{1}_{o(A')_{\sigma}})(X) = \begin{cases} |O(A)_{\sigma}| & \text{if } O(A) = O(A'); \\ 0 & \text{otherwise.} \end{cases}$$

6. The next result can be proved under the Assumption 1.

Theorem 4. Let $b = \text{Lie}(\mathfrak{B})_{\sigma}$ and X be an arbitrary element of g. Then the number of nilpotent elements in the set b + X is always q^{N} .

Remark. Compare with the author's previous result [5, Theorems 7.2, 7.5] on the distribution of regular unipotent elements in G.

References

- D. Alvis: Duality in the character ring of a finite Chevalley group. Proc. of the Santa Cruz Conference Finite groups (Proc. Symp. Pure Math., 37), Amer. Math. Soc., Providence, pp. 353-357 (1980).
- [2] C. W. Curtis: Truncation and duality in the character ring of a finite group of Lie type. J. of Alg., 62, 320-332 (1980).
- [3] P. Deligne and G. Lusztig: Duality for representations of a reductive groups

over a finite field (to appear).

- [4] E. B. Dynkin: Semisimple subalgebras of semisimple Lie algebras. Amer. Math. Soc. Transl., ser. 2, 6, 111-245 (1957).
- [5] N. Kawanaka: Unipotent elements and characters of finite Chevalley groups. Osaka J. Math., 12, 523-554 (1975).
- [6] B. Kostant: The principal three dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math., 81, 973-1032 (1959).
- [7] T. A. Springer: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. math., **36**, 173-203 (1976).
- [8] ——: The Steinberg function of a finite Lie algebra. ibid., 58, 211-215 (1980).
- [9] T. A. Springer and R. Steinberg: Conjugacy classes. Seminar on Algebraic Groups and Related Finite Groups. Lect. Notes in Math., vol. 131, part E, Springer, Berlin-Heidelberg-New York (1970).