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O. Let (R) be a connected simple algebraic group defined over a
finite field k=F, and let =Lie ((R)), the Lie algebra of (R). We denote
by a the Frobenius morphism, and by G (resp. g) the set (R) (resp. )
of a-fixed points of (R) (resp. ). Let Inv (g)be the space of C-valued
Ad (G)-invariant unctions on g nd Inv (go) the subspace of Inv(g)
consisting o2 all f e Inv (g) supported by the set go o nilpotent elements
oi g. In 2, we introduce an operation f--f^ or f e Inv (g), and in

3, we define the ’Fourier transform’ (f) or f e Inv (go). The main
result (Theorem 3) of this paper says that these two operations coincide
with each other on a relatively large subspace Inv (go)’ o. Inv (go), if
the characteristic o k is not too small. As a corollary, we can prove
orthogonality relations (Cor. 2) or {(lo)}o, where 0 runs over the set
of a-stable nilpotent Ad ((R))-orbits in g and lo is the characteristic
unction o O. This can be considered as a counterpart to a result
[7, 5.6] of T.A. Springer. (He treated the case o strongly regular
(semisimple) orbits rather than nilpotent orbits.) At the end o the
paper we present a curious fact (Theorem 4) on the distribution of
nilpotent elements in g. Although this result is nt directly related
to our main results, Theorem 4 and Corollaries 1, 2 show that the
varlety g0 of nilpotent elements of g smetimes looks like a 2N-dimen-
sional vector subspace o , where 2N=dim g0.

Details and proofs are mitted and will be published elsewhere.
Acknowledgement. In 1977, G. Lusztig conjectured Theorem

1 in a private conversation with the author. The author wuld like to
express his hearty thanks to G. Lusztig or sharing precious ideas.

1. Let be a a-stable Borel subgroup oi (R) and % a a-stable
maximal torus contained in . Put B and N(%)=the normalizer
of % in (R). Then (G, B, N(%)) is a Tits system with the Weyl group
W=N(%)/%. Let (W, R) be the associated Coxeter system. Then,
to each JcR, there corresponds a a-stable parabolic subgroup j of
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(R) containing . Let z be the unipotent radical of z. Put Pz-(z),
Vj=(j), pj=Lie(3) and v=Lie(3).

If is a a-stable algebraic subgroup of (R), H=2 and h= Lie (),
we denote by Inv (H) (resp. Inv (h)) the space of C-valued class func-
tions on H (resp. Ad (H)-invariant functions on h) with the inner
product

(fl, f2) IH1-1 ,xg fl(x)f.(X) (f e Inv (H))
(resp. (fl,fi.}=lHI- xef(x)f(x) (f e Inv (h))).

Imitating the definition of the inducing map ind," Inv (H)-Inv (G), we
define the inducing map ind," Inv (h)-Inv (g) by

ind (f)(A)=IH1-1 xe,A(x)Aef (Ad (x)A)
for f e Inv (h) and A e g.

2. Let J be a subset o R. For f e Inv (G) (resp. f e Inv (g)), we
define an element fz of Inv (Pz) (resp. Inv (p)) by

f (x e
(resp. f(X)=IVI-’ .ef(X+ Y) (X e p)).

Then
f^ ,JR (-- 1) ’J’ indj (fj)
(resp. f^ ,zR (-- 1) ’’ indj (fz))

is again an element of Inv (G) (resp. Inv (g)).
Theorem 1. ( ) (f^)^ =f for any f e Inv (G) (resp. Inv (g)).
(ii) (f,f}o=(f:,f;}a (resp. (fl,f},=(f;,f;},) for any f,f2

e Inv (G) (resp. Inv (g)).
(iii) Suppose that f is an irreducible character of G. Then f^ or

--f^ is an irreducible character.
Remark. This has als0 been proved by D. A1vis [1] independently.

See also Curtis [2] and Deligne-Lusztig [3].
3. From now on we need the ollowing"
Assumption 1o The characteristic p oi k is good ([9, p. 178]) for

(R). I (R) is o type A and p devides l/ 1, we also assume that (R) is
simply connected, i.e., (R)=SLn over .

Let (, ) be a symmetric, Ad ((R))-invariant bilinear orm on g
defined over k. If (R) is not o type At, we take (, ) to be non-degen-
erate. If (R) is oi type A, we put

(X, Y)= Trace XY (X, Y e --sly).
(See [9, p. 184].)

Let go and Inv (go) be as in 0. For f e Inv (go), the (modified)
Fourier transform (f) ( e Inv (go)) is defined by

]eo Z((X*, Y))f(Y) (X e go);
(f)(X)

0 (X e g \ go),
where Z is a non-trivial additive character o k, XX* is an opposition
automorphism of (which acts as -1 on the root system of ) and N

1/2 (dim g0)-the number of positive roots of (R).
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Remark. Usually (see e.g. [8]) the Fourier transform F(f)of a
unction f on g is defined by

F(f)(X)=q-/ (m) ,e Z((X, Y))f’(Y) (X e g).
4. Let be a a-stable subgroup of ! (--the unipotent radical of

) normalized by , and let n-- Lie (). We denote by Inv (go)’ the
subspace o Inv(g0)spanned by all elements of the form ind (1) or
various . In the proofs of Theorems 2 and 3 below we use a classi-
fication theorem o nilpotent orbits due to Dynkin [4], Kostant [6] and
Springer-Steinberg [9]. The ollowing assumption is made just or
this reason.

Assumption 2. I (R) is of type E, E, E,, F or G, we assume
that p>=4m-t- 3, where m is the height of the highest root of (R). (If
G is o type A, B, C or D, Assumption 1 above is already sufficient.)

Remark. It is almost certain that the restrictions on p for excep-
tional groups are too strong.

Theorem 2. For A go, we denote by O(A) the Ad ((R))-orbit of A,
and by lo() the characteristic function of O(A).

( i ) Let f e Inv (g0Y and A go. Then f. lo() e Inv (go)’.
(ii) lo() e Inv (go)’ for any A e go.
5. Theorem . f^ (f) for any f Inv(g0)’.
Remark. As can, be easily seen rom the case that (R)-SL and

p :/:2, one can not replace Inv (go)’ with Inv (go) in Theorem 3.
Combining Theorems 1 and 3, we get"
Corollary 1. (i) ((f))--f for any f e Inv (go)’.
(ii) (f,f}= ((f), (f0} for any f,f e Inv (g0)’.
By Theorem 2 (ii), we have the ollowing orthogonality relations

as a special case of Corollary 1 (ii).
Corollary 2. Let A, A’ e go. Then

()(X) o otherwise.
6. The next esult can be proved under the Assumption 1.
Theorem 4. Let b--Lie () and X be an arbitrary element of g.

Then the number of nilpotent elements in the set b +X is always q.
Remark. Compare with the author’s previous result [5, Theorems

7.2, 7.5] on the distribution of regular unipotent elements in G.
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