113. Characteristic Indices and Subcharacteristic Indices of Surfaces for Linear Partial Differential Operators

By Sunao OUCHI

Department of Mathematics, Jochi (Sophia) University

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1981)

Let $P(z, \partial_z)$ be a linear partial differential operator with coefficients holomorphic in Ω , $\Omega \subset C^{n+1}$, and $K = \{\varphi(z) = 0\}$ be a nonsingular surface. In the present note we first introduce characteristic indices, subcharacteristic indices and the localization on K of $P(z, \partial_z)$, which represent the relationship between the surface K and $P(z, \partial_z)$. Next we show that they are useful, by considering the equation $P(z, \partial_z)u(z) = f(z)$, where f(z) is holomorphic in $\Omega - K$. The proofs of theorems will be published elsewhere.

§1. Definitions. Let C^{n+1} be the (n+1)-dimentional complex space. $z = (z_0, z_1, \dots, z_n) = (z_0, z')$ denotes its point and $\xi = (\xi_0, \xi')$ denotes its dual variable. $\partial_z = (\partial_{z_0}, \partial_{z_1}, \dots, \partial_{z_n}) = (\partial_{z_0}, \partial_{z'})$. For a linear partial differential operator $A(z, \partial_z)$, $A(z, \xi)$ means its total symbol.

Now let us define the localization on K of $P(z, \partial_z)$, characteristic indices σ_i $(1 \le i \le p)$ and subcharacteristic indices $\sigma_{p,i}$ $(1 \le i \le q)$. We choose the coordinate so that $\varphi(z) = z_0$. Hence $K = \{z_0 = 0\}$. Let $P(z, \partial_z)$ be a linear partial differential operator of order m in a neighbourhood Ω of z=0. Put

(1.1)
$$\begin{cases} P(z,\partial_z) = \sum_{i=0}^m P_i(z,\partial_z) \\ P_i(z,\partial_z) = \sum_{l=0}^i A_{i,l}(z,\partial_{z'})(\partial_{z_0})^{i-l}, \end{cases}$$

where $A_{i,l}(z,\xi')$ is homogeneous in ξ' , with degree *l*. We develop $A_{i,l}(z,\xi')$ with respect to z_0 at $z_0=0$,

(1.2)
$$A_{i,l}(z,\xi') = \sum_{j=0}^{\infty} A_{i,l,j}(z',\xi')(z_0)^j.$$

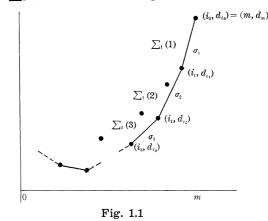
Let us put

(1.3)
$$\begin{cases} d_i = \min \{(l+j); A_{i,l,j}(z',\xi') \equiv 0\}, \\ j_i = \min \{j; A_{i,l,j}(z',\xi') \equiv 0, l+j = d_i\} \end{cases}$$

If $A_{i,l}(z,\xi') \equiv 0$ for all l we put $d_i = j_i = +\infty$. We first give

Definition 1.1. The operator $A_{m,L,J}(z', \partial_{z'})$, where $J = j_m$ and $L+J = d_m$, is called the localization on K of $p(z, \partial_z)$.

Let us define characteristic indices σ_i $(1 \le i \le p)$ which were introduced in \overline{O} uchi [4]. Consider the set $A\{(i, d_i); 0 \le i \le m, d_i \ne +\infty\}$ in R^2 and the convex hull \hat{A} of A. If the lower convex part of the boundary $\partial \hat{A}$ of \hat{A} consists of one point (m, d_m) , we put $\sigma_1 = 1$. Otherwise it consists of segments $\sum_i (i)$ $(1 \le i \le l)$ (see Fig. 1.1).

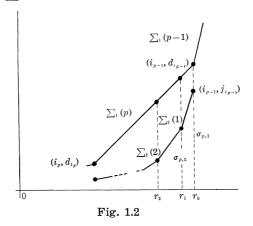


We denote by Δ_1 the set of vertexes of $\bigcup_{i=1}^{l} \sum_{i} (i)$. We can put $\Delta_1 = \{(i_k, d_{i_k}); k = 0, 1, \dots, l\}$, where $m = i_0 > i_1 \dots > i_l \ge 0$. Put (1.4) $\sigma_k = \max\{(d_{i_{k-1}} - d_{i_k})/(i_{k-1} - i_k), 1\}.$

Then there is a $p \in N$ such that $\sigma_1 > \sigma_2 > \cdots > \sigma_{p-1} > \sigma_p = 1$.

Definition 1.2. We call σ_i $(1 \le i \le p)$ the *p*-th characteristic index of K for $P(z, \partial_z)$.

Let us define subcharacteristic indices $\sigma_{p,i}$ $(1 \le i \le q)$. Consider the set $B = \{(i, j_i); d_{i_{p-1}} - d_i = i_{p-1} - i, 0 \le i \le i_{p-1}\}$. We also consider the lower convex part of the boundary $\partial \hat{B}$ of the convex hull \hat{B} of B. If $\partial \hat{B}$ consists of one point $(i_{p-1}, j_{i_{p-1}})$, we put $\sigma_{p,1} = 1$. Otherwise is consists of segments $\sum_{i} (i) (1 \le i \le l')$ (see Fig. 1.2).



We denote by Δ_2 the set of all vertexes of $\bigcup_{i=1}^{l'} \sum_2 (i)$. Put $\Delta_2 = \{(r_k, j_{r_k}); k=0, 1, \dots, l'\}$, where $i_{p-1} = r_0 > r_1 > \dots > r_{l'} \ge 0$, and (1.5) $\sigma_{p,k} = \max\{(j_{r_{k-1}} - j_{r_k})/(\mathbf{r}_{k-1} - r_k), 1\}.$

No. 10]

Hence there is a $q \in N$ such that $\sigma_{p,1} > \sigma_{p,2} > \cdots > \sigma_{p,q-1} > \sigma_{p,q} = 1$.

Definition 1.3. $\sigma_{p,i}(1 \le i \le q)$ is said to be the *i*-th subcharacteristic index of K for $P(z, \partial_z)$.

Remark 1.4. K is characteristic, that is, $P_m(0, z', 1, 0, \dots, 0) \equiv 0$, if and only if $d_m \ge 1$. In particular if $\sigma_1 > 1$ or if $\sigma_1 = 1$ and $\sigma_{1,1} > 1$, then K is characteristic.

We prepare some function spaces:

 $\tilde{\mathcal{O}}(\Omega-K)$; the set of all functions holomorphic on the universal covering space of $\Omega-K$,

 $\widetilde{\mathcal{O}}_{\tau}(\Omega-K) = \{f(z) \in \widetilde{\mathcal{O}}(\Omega-K); \text{ for any } \alpha, \beta \text{ there are constants } A_{\alpha,\beta} \text{ and } c \text{ such that for } \alpha < \arg z_0 < \beta \text{ and } z \in \Omega-K |f(z)| \le A_{\alpha,\beta} \exp \left(c |z_0|^{-r} \right) \},$

$$\begin{split} &\tilde{\mathcal{O}}_{(0,\delta)}(\mathcal{Q}-K) = \{f(z) \in \tilde{\mathcal{O}}(\mathcal{Q}-K) \text{ ; for any } \alpha, \beta \text{ there are constants } A_{\alpha,\beta} \\ & \text{and } c \text{ such that for } \alpha < \arg z_0 < \beta \text{ and } z \in \mathcal{Q}-K | f(z)| \leq A_{\alpha,\beta} \exp \left(c |\log z_0|^\delta \right) \}. \\ & \text{We denote } \tilde{\mathcal{O}}_{(0,1)}(\mathcal{Q}-K) \text{ by } \widetilde{\mathcal{M}}(\mathcal{Q}-K). \quad \text{We have the inclusion } \widetilde{\mathcal{M}}(\mathcal{Q}-K) \\ & \subset \tilde{\mathcal{O}}_{(0,\delta)}(\mathcal{Q}-K) \subset \tilde{\mathcal{O}}_{\gamma}(\mathcal{Q}-K), \text{ where } \gamma > 0 \text{ and } \delta \geq 1. \end{split}$$

§ 2. Theorems. Now let us consider (2.1) $P(z, \partial_z)u(z) = f(z)$, where $f(z) \in \tilde{\mathcal{O}}(\Omega - K)$. For existence of u(z), we have

Theorem I. Assume that $A_{m,L,J}(0,\xi') \equiv 0$, that is, the localization on K is noncharacteristic in some direction at z'=0. Then there is a solution $u(z) \in \overline{\mathcal{O}}(\Omega_1-K)$ of (2.1), where Ω_1 is a neighbourhood of z=0and independent of f(z). Moreover if $\sigma_1 > 1$ and $f(z) \in \widetilde{\mathcal{O}}_{\sigma_1-1}(\Omega-K)$, u(z)is found in $\widetilde{\mathcal{O}}_{\sigma_1-1}(\Omega-K)$ and if $\sigma_1=1$ and $f(z) \in \widetilde{\mathcal{O}}_{(0,\sigma_1,1)}(\Omega-K)$, u(z) is found in $\widetilde{\mathcal{O}}_{(0,\sigma_1,1)}(\Omega-K)$.

Corollary II. Under the assumption of Theorem I, if $f(z) \in \widetilde{\mathcal{M}}(\Omega-K)$, there is a solution u(z) of (2.1) in $\widetilde{\mathcal{O}}_{\sigma_1-1}(\Omega_1-K)$ ($\widetilde{\mathcal{O}}_{(0,\sigma_1,1)}(\Omega_1-K)$), if $\sigma_1 > 1$ (resp. $\sigma_1 = 1$).

Remark 2.1. If K is a characteristic surface with constant multiplicity, the equation (2.1) was investigated by Hamada [1], [2], Hamada, Leray and Wagschal [3], Persson [5], Wagschal [6] and others. Their condition, constant multiplicity, is much stronger than ours.

We also have exsitence of null solutions in real domain. We denote by x the real coordinate, $x_i = \text{Re } z_i$.

Theorem III. Assume that $A_{m,L,J}(0,\xi') \equiv 0$ and $L \ge 1$. Then there is a function u(x), which is C^{∞} and analytic except $\{x_0=0\}$ in neighbourhood U of x=0 such that

(2.2) $\begin{cases} P(x, \partial_x)u(x) = 0\\ \text{supp. } u(x) \subset \{x_0 \ge 0\} \cap U\\ \text{supp. } u(x) \ni \{x=0\}. \end{cases}$

S. Ōυсні

References

- [1] Hamada, Y.: The singularities of the solutions of the Cauchy problem. Publ. RIMS, Kyoto Univ., 5, 21-40 (1969).
- [2] —: Problème analytique de Cauchy à caractéristiques multiples dont les données de Cauchy ont des singularités polaires. C. R. Acad. Sci. Paris, Ser. A, 276, 1681-1684 (1973).
- [3] Hamada, Y., Leray, J., et Wagschal, C.: Systèmes d'équations aux derivées partielles à caractéristiques multiples; problème de Cauchy ramifié; hyperbolicité partielle. J. Math. Pures Appl., 55, 297-352 (1976).
- [4] Ouchi, S.: Characteristic Cauchy problems and solutions formal power series. Proc. Japan Acad., 56A (8), 372-375 (1980).
- [5] Persson, J.: On the Cauchy problem in Cⁿ with singular data. Mathematiche, 30, 339-362 (1975).
- [6] Wagschal, C.: Problème de Cauchy analytique, à données méromorphes.
 J. Math. Pures Appl., 51, 375-397 (1972).