6. Meromorphic Solutions of Some Difference Equations of Higher Order

By Niro Yanaginara
Department of Mathematics, Chiba University
(Communicated by Kôsaku Yosida, m. J. A., Jan. 12, 1982)

1. Introduction. In this note, we will investigate the equation

$$
\begin{equation*}
\alpha_{n} y(x+n)+\alpha_{n-1} y(x+n-1)+\cdots+\alpha_{1} y(x+1)=R(y(x)) \tag{1.1}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
R(w)=P(w) / Q(w) \tag{1.2}\\
P(w)=a_{p} w^{p}+\cdots+a_{0} \\
Q(w)=b_{q} w^{q}+\cdots+b_{0}
\end{array}\right.
$$

in which $\alpha_{n}, \cdots, \alpha_{1} ; a_{p}, \cdots, a_{0} ; b_{q}, \cdots, b_{0}$ are constants, $\alpha_{n} a_{p} b_{q} \neq 0$, $P(w)$ and $Q(w)$ are mutually prime. In the below, p and q denote the degrees of the nominator $P(w)$ and the denominator $Q(w)$ in (1.2), respectively. Put

$$
\begin{equation*}
q_{0}=\max (p, q) \tag{1.3}
\end{equation*}
$$

When $n=1$ in (1.1), we have

$$
y(x+1)=R(y(x))
$$

If $q_{0}=1$ in (1.1'), then the equation reduces to a linear difference equation, by some linear transformation if necessary. When $q_{0} \geqq 2$, equation (1.1') is studied by Shimomura [3] and by the author [4]. Results are:

Proposition 1. Suppose $q_{0} \geqq 2$. Any nontrivial meromorphic solution of (1.1') is transcendental and of infinite order (in Nevanlinna's sense).

Proposition 2. When $q=0$ and $q_{0}=p \geqq 2$ in (1.1'), any meromorphic solution is entire.

Proposition 3. (1.1') possesses nontrivial meromorphic solutions.
Now we consider the case $n>1$ in (1.1). It will be observed that several differences appear between the cases $n=1$ and $n>1$.
2. Transcendency and order. Prop. 1 does not hold for $n>1$. e.g.,

$$
\begin{equation*}
y(x+2)-y(x+1)=-y(x)^{2} /[(1+2 y(x))(1+y(x))] \tag{2.1}
\end{equation*}
$$

has a rational solution $y(x)=1 / x$. However, we have
Theorem 2.1. When $p>q \geqq 0$ and $q_{0}=p \geqq 2$, then any meromorphic solution of (1.1) is transcendental.

Proof. Suppose there would exist a rational solution $y(x)$ for (1.1).

When $q \geqq 1$. Let μ be a number such that $Q(\mu)=0$, and x_{0} be such that $y\left(x_{0}\right)=\mu$. Obviously, $x_{0} \neq \infty$. Thus there is some $k, 1 \leqq k \leqq n$, such that $x_{0}+k$ is a pole for $y(x)$. Put

$$
\begin{aligned}
& k_{1}=\max \left\{k ; 1 \leqq k \leqq n, x_{0}+k \text { is a pole for } y(x)\right\}, \\
& x_{1}=x_{0}+k_{1}
\end{aligned}
$$

Similarly, since $p>q$, there is $k_{2}, 1 \leqq k_{2} \leqq n$, such that $x_{1}+k_{2}$ is a pole for $y(x)$. Repeating this procedure, $y(x)$ would have an infinite number of poles, which contradicts the supposition of rationality.

When $q=0$. If $y(x)$ has a pole, then the above arguments apply, and we have a contradiction also. If $y(x)$ has no poles hence a polynomial, then, inserting it into (1.1) and comparing the degrees of polynomials on both sides, we also obtain a contradiction since $p \geqq 2$.
Q.E.D.

Let us give another counter-example to Prop. 1. The equation

$$
\begin{equation*}
y(x+2)+y(x+1)=\left[y(x)^{2}+1\right] / y(x) \tag{2.2}
\end{equation*}
$$

has a transcendental meromorphic solution $y(x)=\left(e^{\pi i x}+1\right) /\left(e^{\pi i x}-1\right)$, which is of order 1. However, we have

Theorem 2.2. Suppose $q_{0}>n$. Then any meromorphic solution of (1.1) is transcendental and of infinite order.

Proof. We will show here the transcendency only. The fact that the order is ∞ has been proved by Ochiai [2].

In view of Theorem 2.1, we can suppose $p \leqq q$, hence $q_{0}=q$. Assume there would be a rational solution $y(x)=A(x) / B(x)$, in which deg $[A(x)]$ $=a$, $\operatorname{deg}[B(x)]=b$. We can suppose $b_{0} \neq 0$ in (1.2), by considering $y(x)+\beta(Q(\beta) \neq 0)$ instead of $y(x)$, if necessary. Put

$$
\alpha_{n} A(x+n) / B(x+n)+\cdots+\alpha_{1} A(x+1) / B(x+1)=C(x) / D(x),
$$

where $\operatorname{deg}[D(x)] \leqq n b, \operatorname{deg}[C(x)] \leqq a+(n-1) b$. On the other hand

$$
R(y(x))=B(x)^{q-p}[E(x) / F(x)],
$$

where

$$
\begin{aligned}
& E(x)=a_{p} A(x)^{p}+a_{p-1} A(x)^{p-1} B(x)+\cdots+a_{0} B(x)^{p}, \\
& F(x)=b_{q} A(x)^{q}+b_{q-1} A(x)^{q-1} B(x)+\cdots+b_{0} B(x)^{q} .
\end{aligned}
$$

$E(x)$ and $F(x)$ are obviouly mutually prime.
(i) Suppose $a<b$. Then $\operatorname{deg}[F(x)]=b q=b q_{0}>b n \geqq \operatorname{deg}[D(x)]$, which is a contradiction.
(ii) Suppose $a>b$. Then $\operatorname{deg}[E(x)]=a p+b(q-p)=(a-b) p+b q$ $>a+b(n-1) \geqq \operatorname{deg}[C(x)]$, which is also a contradiction.
(iii) Suppose $a=b$. Then $\lim _{x \rightarrow \infty}[A(x) / B(x)]=\lambda \neq 0, \infty . \quad \lambda$ satisfies $\left(\alpha_{n}+\cdots+\alpha_{1}\right) \lambda=R(\lambda)$, whence $Q(\lambda) \neq 0$. Put $y(x)=u(x)+\lambda$. Then $u(x)=A_{1}(x) / B_{1}(x)$ satisfies the equation

$$
\alpha_{n} u(x+n)+\cdots+\alpha_{1} u(x+1)=P_{1}(u(x)) / Q_{1}(u(x))
$$

where $Q_{1}(0)=Q(\lambda) \neq 0$. Since $\operatorname{deg}\left[B_{1}(x)\right]=\operatorname{deg}[B(x)]>\operatorname{deg}\left[A_{1}(x)\right]$, we have a contradiction in this case also, by the case (i).

Thus we conclude that $y(x)$ can not be rational.
Q.E.D.
3. The case $p-q \geqq 2$. We have

Theorem 3.1. Any solution of (1.1) is entire if $q=0$ and $p \geqq 2$.
Proof. Let $y(x)$ be a meromorphic solution of (1.1), and let $s\left(x_{0}\right)$ be the order of a pole x_{0} for $y(x) . \quad s\left(x_{0}\right)$ is a nonnegative integer.

Suppose $s\left(x_{0}\right)>0$ for some x_{0}. Then by (1.1) we know that

$$
s_{0}=\max \left\{s\left(x_{0}+k\right) ; k=1, \cdots, n\right\}>0
$$

Obviously $s\left(x_{0}\right) \leqq s_{0} / p$, and

$$
s\left(x_{0}-1\right) \leqq \max \left(s_{0}, s\left(x_{0}\right)\right) / p=s_{0} / p
$$

Similarly $s\left(x_{0}-2\right) \leqq \max \left(s_{0}, s\left(x_{0}\right), s\left(x_{0}-1\right)\right) / p=s_{0} / p$. In general

$$
s\left(x_{0}-k\right) \leqq s_{0} / p, \quad 0 \leqq k \leqq n
$$

Put

$$
\begin{aligned}
& s_{1}=\max \left\{s\left(x_{0}-k\right) ; k=1, \cdots, n\right\} \leqq s_{0} / p, \\
& k_{1}=\max \left\{k ; s\left(x_{0}-k\right)>0,0 \leqq k \leqq n\right\}, \\
& x_{1}=x_{0}-k_{1} .
\end{aligned}
$$

Obviously, $k_{1}>0$. As in the above, we can easily see that

$$
s\left(x_{1}-k\right) \leqq s_{1} / p \leqq s_{0} / p^{2}, \quad 1 \leqq k \leqq n .
$$

Thus we obtain a sequence of integers $\left\{k_{1}, k_{2}, \cdots\right\}, k_{j}>0$, such that

$$
x_{j}=x_{j-1}-k_{j} \quad \text { satisfies } 0<s\left(x_{j}\right)<s_{0} / p^{j},
$$

which leads obviously to a contradiction. Thus $s\left(x_{0}\right)=0$ for any x_{0}, which means that $y(x)$ is entire.
Q.E.D.

Remark. When $Q(w)$ in (1.2) has only one zero point, then (1.1) may possess an entire solution. For example,

$$
\begin{equation*}
y(x+2)+y(x+1)=\left[y(x)^{6}+1\right] / y(x)^{2} \tag{3.1}
\end{equation*}
$$

has solution $y(x)=\exp \left[(-2)^{x}\right]$. However, it is easy to see that, if $Q(w)$ has at least two distinct zero points, then any meromorphic solution of (1.1) can not be entire.

Theorem 3.2. When $p-q \geqq 2$ in (1.2), then any meromorphic solution of (1.1) is of order ∞. (For the case $p-q=1$, see the example (2.2).)

Proof. Let $y(x)$ be a meromorphic solution of (1.1). $y(x)$ is transcendental by Theorem 2.1. Write $t=p-q \geqq 2$.
(i) When $y(x)$ is entire. By the remark above, $Q(w)$ must be of the form $(w-b)^{q}(q \geqq 0)$, where b is a const. Then

$$
R(w)=c_{t} w^{t}+\cdots+c_{0}+c_{-1}(w-b)^{-1}+\cdots+c_{-q}(w-b)^{-q} .
$$

(When $q=0$, we set $c_{-j}=0, j \geqq 1$.) Let r be so large that $M(r)>2|b|$, where

$$
\begin{equation*}
M(r)=\max _{|x|=r}|y(x)| . \tag{3.2}
\end{equation*}
$$

Let x_{0} be a point such that $\left|x_{0}\right|=r$ and $\left|y\left(x_{0}\right)\right|=M(r)$. Then

$$
\begin{align*}
\left|R\left(y\left(x_{0}\right)\right)\right| & \geqq\left|c_{t}\right| M(r)^{t}-\cdots-\left|c_{0}\right|-\left|c_{-1}\right|(2 / M(r))-\cdots-\left|c_{-q}\right|(2 / M(r))^{q} \tag{3.3}\\
& \geqq(1 / 2)\left|c_{t}\right| M(r)^{t}
\end{align*}
$$

if r is sufficiently large. Since $\max _{|x|=r}|y(x+k)| \leqq M(r+k) \leqq M(r+n)$,
(3.4) $\quad\left|\alpha_{n} y(x+n)+\cdots+\alpha_{1} y(x+1)\right| \leqq\left(\left|\alpha_{n}\right|+\cdots+\left|\alpha_{1}\right|\right) M(r+n)$,
on $|x|=r$. By (3.3) and (3.4), we have $M(r+n) \geqq A M(r)^{t}$ for a const.
A, i.e., $\log M(r+n) \geqq t \log M(r)+O(1)$. Therefore,
$\log M(r+n k) \geqq t^{k} B \log M(r) \quad$ for a const. $B>0$.
If we write $\rho=r+n k$, then

$$
\log M(\rho) \geqq\left(t^{1 / n}\right)^{\rho} B\left[\log M(r) / t^{r}\right] \quad \text { for } r_{0} \leqq r \leqq r_{0}+n
$$

with a sufficiently large r_{0}, which shows that the order of $y(x)$ is ∞.
(ii) When $y(x)$ has a pole x_{0}. Let $s\left(x_{0}\right)$ be the order of the pole x_{0}. Write $\left|x_{0}\right|=r$. By (1.1), there is a $k, 1 \leqq k \leqq n$, such that $x_{1}=x_{0}+k$ is a pole of order $s\left(x_{1}\right) \geqq t s\left(x_{0}\right)$. In general, for any m, there are poles x_{1}, \cdots, x_{m} such that $\left|x_{1}\right|<\left|x_{2}\right|<\cdots<\left|x_{m}\right|,\left|x_{j}\right| \leqq r+n j(1 \leqq j \leqq m)$, of order $s\left(x_{j}\right) \geqq t^{j} s\left(x_{0}\right)$. Let $N(r, y(x))$ be the counting function of $y(x)$ (see [1, p. 165]). Then $N(r+n m, y(x)) \geqq A \times t^{m}$ with a const. A. Hence writing $r+n m=\rho$, we obtain
$T(\rho, y(x)) \geqq N(\rho, y(x)) \geqq A_{1} t^{\rho / n} \quad$ with a const. A_{1}, which shows that the order of $y(x)$ is ∞.
Q.E.D.

In a subsequent paper, we will show that, if p and q are nonnegative integers, $p \geqq q+1$, $\max (p, q) \leqq n$, then there is an equation of the form (1.1) which possessess a meromorphic solution of finite order.

References

[1] R. Nevanlinna: Analytic Functions. Springer-Verlag, Berlin-HeidelbergNew York (1970).
[2] H. Ochiai: Meromorphic solutions of some difference equations. Mem. Fac. Education, Miyazaki Univ., Natural Sci., nos. 50-51 March (1982).
[3] S. Shimomura: Entire solutions of a polynomial difference equation. Jour. Fac. Sci., Univ. Tokyo, Sec. IA, 28, 253-266 (1981).
[4] N. Yanagihara: Meromorphic solutions of some difference equations. Funkcialaj Ekvacioj, 23, 309-326 (1980).

