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25. On Fourier Coefficients and Certain “Periods” of
Modular Forms

By Shinji N1iwa
Nagoya City College of Child Education

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1982)

In this paper, we shall show a relation between Fourier coefficients
of modular forms of half integral weight and certain “periods” of
modular forms of integral weight.

We denote the upper half plane by H. Put e(z)=exp (2riz), 6(z)

=Y _.e(n%2) and k=2m+1 for an integer m. For M=(ff§)

€ GL(2,R) and a function f(z) on H we put Mz=(az+b)/(cz+d),
J(M, 2)=0(Mz)/0(z) and f(2)|.[M]),,=7(M,z)*f(Mz). We denote the
space of cusp forms of weight 2m (resp. k/2) for I'(2) (resp. I'((4)) by
U (resp. V). For a rational number » and a discrete subgroup I', put

@), 9(); I'yr,zy= L\H F@)9(@y *dady, (z=x+1y).
We define an operation of g e G=SL(2, R) on R* by g(x,y, 2)=(2', ¥, 2
’ ’ t — m .
whes (7 Y1) =0( %) 0. P zor=(1)"(£) v
Shimura’s symbol (—) in [2]. For (a, b, ¢) € R, put (a, b, c)=(a—1b
—o)"e(i(20°+b*+2¢%)/p). Let p be an odd prime and let L=(4p)-'Z
XZXpZ. We assume p=(—1)"*' mod 4 throughout this paper. For

z=x+1y and g € G, define
0.(z, Q)=( bZ)eL 1(4pa)y Y h(y/py g~'(a, b, ¢))e(x(b*—4ac)).

For w=u-+1v, put g,= (“/O7 @1‘; yg> and let 6,(z, w)=v""0,z,9,). Let

Iyn, p) = {(‘;"3) € ()| b=0mod p| and let I'(4, )\ (H={M,, M,, - - -,

M,.}. Putbfz, w)=225 p~"60(2/p, w/p).IM ] .. The equality in [6,
p. 154, line 7] implies that 6,(z, w) satisfies transformation formulas for
I'(2,p) as a function of w. Moreover, using [3, Prop. 1.6] we can ex-
press 6, as a linear combination of some 6 series. Though the present
case is more complicated, we get in the same way as in the first para-
graph in [6, p. 154] the following proposition.

Proposition 1. 64z, w-+1)=6,z, w).

For f(2)= 2. a(n)e(nz) eV, put F{f}(2) = >7.,A(n)e(nz) with
A (n) determined by the relation

Zammr A= (300 altn®In= ). p(nn™ 1),

Then, by [6] we get
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Proposition 2. For feV, (f(2), 0z, w); I'(4), k/2, z) =dF{f},(w)
where d=p™2+¥22-m+¥(—)"(y,) " with the Gaussian sum &(y,) of 1,

Let {k.(2)} be orthonormal basis of V and put K(z, w)=>_, h(2)h(w).
Then, K is the reproducing kernel function of V. Put L(z, w)
=(K(z,72), 02, w); I'(4),k/2,2>. Then, it follows from Proposition
2 that
@)) {f(2), L(z, w); F0(4), k/2 2y=dF{f},(w).
By [1] and [5], we get V=(@,0)@@,N)); U=(®.0)B@®,N)); dim 0,
=dim 0,=2; dim N,=dim N,=1; 0,~0,, N,~N, as Hecke algebra
modules. Let G, be the element in N, whose first Fourier coefficient
is unity. Then, G, is a newform. Let a,) be the I-th Fourier coef-
ficient of a base g, in N,. Then, F{g,},=a,p)G,. Denote {, ; I'(4),
k/2,2> simply by {,>. Let f;, f:. be an orthonormal basis of 0,.
Then, by [5] and (1) we get

Proposition 3.

L(z, w)=d 20 gj(z)a'rj(ﬁ)aj(w)<gj’ gyt +d Zz,nfi,n(z)F{:f‘;,n}pzw)

It is rather easy to see that

(L(z, w), G (w); I'(2),2m, w)

=(K(z,2), {02, w), G (w); I'(2),2m, w); I'(4), k/2,2)
= {04z, w), G(w) ; I'(2), 2m, w).

Thus, we get

Proposition 4.

0Lz, w), T('w—_) I'(2), 2m, w)<9; 95>
=da (D)9 2)G (w), G w); ['(2),2m, w).

By [3] we can calculate Fourier coefficients of the function (of 2)
in the left side of the above equality. For a positive integer n, put

S ={(a, b, c) e(1/DZXZX Z|(4a, 4p)=1, b*'—4dac=np},

S/’={(a,b,c) e (p/DZXPZXZ|(4a, D=1, (¢, p)=1, b*—4ac=np},
and S,=8,US%. Denote by v, the primitive real character modulo r.
For t=(a, b, ¢) € S,,, put &) =1,,(4a) when t € S;, and &) =,(c)¥(4a)
when t ¢ 87, denote by T, the complete set of representatives of I"(2)-
equivalence classes in S,, and let C(¢, I'((2)) be the geodesic or the recti-
fiable curve on H defined in p. 101 of [3] for a binary quadratic form
ax*+bzy+cy’. Denote also (,; I'(2),2m,w) simply by (, ). Then,
by comparing Fourier coefficients of both sides of the equality in Pro-
position 4, we get

Theorem 1.

2-m+3(—5)™ D &(xp) ' (D)1 Gj, G <95 907
= > &® I G(2)(a—bz+cz)"'dz.
t=(a.570€Tn Oty Fa@)

For G(2)=3Y..c(n)e(nz) and a character y, put L(s, G, )
=372 e(n)y(n)n-°. Ttis easy to see that T',={t(k)=(k/4,p, 0)|k mod 4p,
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(k,4p)=1}. Since C(t(k), I'(2)) is the geodesic line from ico to k/4p,
the summand of the equality in Theorem 1 becomes

) j;p G(2)(—k/dp+2)m1dz

in case n=p, and we especially get the following theorem due to
Waldspurger :
Theorem 2.

2(G;, G <95 9 a@F=(m—1) a="p™="L(m, G;, 1,).
We note that Waldspurger proved Theorem 2 under more general
settings and that our method also can apply to the general cases.
Finally we correct errata related to our present results in the
previous papers. The constant ¢ in Theorem of [6] is not correct.

The correct value is (—1)AN#2+1/42-81+2, (—fg 277_727?/_)”, on the eighth line
D

in p. 187 of [5] should read (Ei:éﬂ-)vp.
D
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