25. On Fourier Coefficients and Certain "Periods" of Modular Forms

By Shinji Niwa
Nagoya City College of Child Education

(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1982)

In this paper, we shall show a relation between Fourier coefficients of modular forms of half integral weight and certain "periods" of modular forms of integral weight.

We denote the upper half plane by H. Put $e(z)=\exp (2 \pi i z), \theta(z)$ $=\sum_{n=-\infty}^{\infty} e\left(n^{2} z\right)$ and $k=2 m+1$ for an integer m. For $M=\binom{a b}{c d}$ $\in G L(2, R)$ and a function $f(z)$ on H we put $M z=(a z+b) /(c z+d)$, $j(M, z)=\theta(M z) / \theta(z)$ and $\left.f(z)\right|_{z}[M]_{k / 2}=j(M, z)^{-k} f(M z)$. We denote the space of cusp forms of weight $2 m$ (resp. k/2) for $\Gamma_{0}(2)$ (resp. $\Gamma_{0}(4)$) by U (resp. V). For a rational number r and a discrete subgroup Γ, put

$$
\langle f(z), g(z) ; \Gamma, r, z\rangle=\int_{\Gamma \backslash H} f(z) \overline{g(z)} y^{r-2} d x d y,(z=x+i y)
$$

We define an operation of $g \in G=S L(2, R)$ on \boldsymbol{R}^{3} by $g(x, y, z)=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ where $\left(\begin{array}{cc}x^{\prime} & y^{\prime} / 2 \\ y^{\prime} / 2 & z^{\prime}\end{array}\right)=g\left(\begin{array}{cc}x & y / 2 \\ y / 2 & z\end{array}\right)^{t} g$. Put $\quad \chi_{t}(n)=\left(\frac{-1}{n}\right)^{m}\left(\frac{t}{n}\right) \quad$ with Shimura's symbol (-) in [2]. For $(a, b, c) \in \boldsymbol{R}^{3}$, put $h(a, b, c)=(a-i b$ $-c)^{m} e\left(i\left(2 a^{2}+b^{2}+2 c^{2}\right) / p\right)$. Let p be an odd prime and let $L=(4 p)^{-1} \boldsymbol{Z}$ $\times \boldsymbol{Z} \times p \boldsymbol{Z}$. We assume $p \equiv(-1)^{m+1} \bmod 4$ throughout this paper. For $z=x+i y$ and $g \in G$, define

$$
\theta_{1}(z, g)=\sum_{(a, b, c) \in L} \chi_{p}(4 p a) y^{(3-k) / 4} h\left(\sqrt{p y} g^{-1}(a, b, c)\right) e\left(x\left(b^{2}-4 a c\right)\right) .
$$

For $w=u+i v$, put $g_{w}=\left(\begin{array}{cc}\sqrt{v} & u / \sqrt{v} \\ 0 & 1 / \sqrt{v}\end{array}\right)$ and let $\theta_{2}(z, w)=v^{-m} \theta_{1}\left(z, g_{w}\right)$. Let $\Gamma_{0}(n, p)=\left\{\left.\binom{a b}{c d} \in \Gamma_{0}(n) \right\rvert\, b \equiv 0 \bmod p\right\}$ and let $\Gamma_{0}(4, p) \backslash \Gamma_{0}(4)=\left\{M_{1}, M_{2}, \cdots\right.$, $\left.M_{p+1}\right\}$. Put $\theta_{3}(z, w)=\left.\sum_{i=1}^{p+1} p^{-m} \theta_{2}(z / p, w / p)\right|_{2}\left[M_{i}\right]_{k / 2}$. The equality in [6, p. 154, line 7] implies that $\theta_{3}(z, w)$ satisfies transformation formulas for $\Gamma_{0}(2, p)$ as a function of w. Moreover, using [3, Prop. 1.6] we can express θ_{3} as a linear combination of some θ series. Though the present case is more complicated, we get in the same way as in the first paragraph in [6, p. 154] the following proposition.

Proposition 1. $\theta_{3}(z, w+1)=\theta_{3}(z, w)$.
For $f(z)=\sum_{n=1}^{\infty} a(n) e(n z) \in V$, put $F\{f\}_{t}(z)=\sum_{n=1}^{\infty} A_{t}(n) e(n z)$ with $A_{t}(n)$ determined by the relation

$$
\sum_{n=1}^{\infty} A_{t}(n) n^{-s}=\left(\sum_{n=1}^{\infty} a\left(t n^{2}\right) n^{-s}\right)\left(\sum_{n=1}^{\infty} \chi_{t}(n) n^{m-1-s}\right) .
$$

Then, by [6] we get

Proposition 2. For $f \in V,\left\langle f(z), \theta_{3}(z, w) ; \Gamma_{0}(4), k / 2, z\right\rangle=d F\{f\}_{p}(w)$ where $d=p^{m / 2+3 / 2} 2^{-m+3}(-i)^{m}\left(\mathbb{G}\left(\chi_{p}\right)^{-1}\right.$ with the Gaussian sum $\left.\mathbb{G H}^{(}\right)$of χ_{p}.

Let $\left\{h_{i}(z)\right\}$ be orthonormal basis of V and put $K(z, w)=\sum_{i} h_{i}(z) \overline{h_{i}}(w)$. Then, K is the reproducing kernel function of V. Put $L(z, w)$ $\left.=\left\langle K\left(z, z^{\prime}\right), \overline{\theta_{3}\left(z^{\prime}, w\right.}\right) ; \Gamma_{0}(4), k / 2, z^{\prime}\right\rangle$. Then, it follows from Proposition 2 that

$$
\begin{equation*}
\left\langle f(z), L(z, w) ; \Gamma_{\sim_{0}}(4), k / 2, z\right\rangle=d F\{f\}_{p}(w) \tag{1}
\end{equation*}
$$

By [1] and [5], we get $V=\left(\oplus_{i} \tilde{O}_{i}\right) \oplus\left(\oplus_{j} \tilde{N}_{j}\right) ; U=\left(\oplus_{i} O_{i}\right) \oplus\left(\oplus_{j} N_{j}\right)$; $\operatorname{dim} \tilde{O}_{i}$ $=\operatorname{dim} O_{i}=2 ; \operatorname{dim} \tilde{N}_{j}=\operatorname{dim} N_{j}=1 ; \tilde{O}_{i} \sim O_{i}, \tilde{N}_{j} \sim N_{j}$ as Hecke algebra modules. Let G_{j} be the element in N_{j} whose first Fourier coefficient is unity. Then, G_{j} is a newform. Let $a_{j}(l)$ be the l-th Fourier coefficient of a base g_{j} in \tilde{N}_{j}. Then, $F\left\{g_{j}\right\}_{p}=a_{j}(p) G_{j}$. Denote $\left\langle, ; \Gamma_{0}(4)\right.$, $k / 2, z\rangle$ simply by \langle,$\rangle . Let f_{i, 1}, f_{i, 2}$ be an orthonormal basis of \tilde{O}_{i}. Then, by [5] and (1) we get

Proposition 3.
$L(z, w)=\bar{d} \sum_{j} g_{j}(z) a_{j}(\bar{p}) G_{j}(\bar{w})\left\langle g_{j}, g_{j}\right\rangle^{-1}+\bar{d} \sum_{i, n} f_{i, n}(z) F\left\{\overline{f_{i, n}}\right\}_{p}(w)$.
It is rather easy to see that

$$
\begin{aligned}
& \left\langle L(z, w), \overline{G_{j}}(w) ; \Gamma_{0}(2), 2 m, w\right\rangle \\
& \quad=\left\langle K\left(z, z^{\prime}\right),\left\langle\theta_{3}\left(\bar{z}^{\prime}, w\right), G_{j}(w) ; \Gamma_{0}(2), 2 m, w\right\rangle ; \Gamma_{0}(4), k / 2, z^{\prime}\right\rangle \\
& \quad=\left\langle\theta_{3}(z, w), \overline{G_{j}}(w) ; \Gamma_{0}(2), 2 m, w\right\rangle .
\end{aligned}
$$

Thus, we get
Proposition 4.

$$
\begin{aligned}
& \left\langle\theta_{3}(z, w), \overline{G_{j}(w)} ; \Gamma_{0}(2), 2 m, w\right\rangle\left\langle g_{j}, g_{j}\right\rangle \\
& \quad=\overline{d a_{j}(\bar{p}) g_{j}(z)\left\langle G_{j}(w), G_{j}(w) ; \Gamma_{0}(2), 2 m, w\right\rangle .}
\end{aligned}
$$

By [3] we can calculate Fourier coefficients of the function (of z) in the left side of the above equality. For a positive integer n, put
$S_{n}^{\prime}=\left\{(a, b, c) \in(1 / 4) \boldsymbol{Z} \times \boldsymbol{Z} \times \boldsymbol{Z} \mid(4 a, 4 p)=1, b^{2}-4 a c=n p\right\}$,
$S_{n}^{\prime \prime}=\left\{(a, b, c) \in(p / 4) Z \times p Z \times Z \mid(4 a, 4)=1,(c, p)=1, b^{2}-4 a c=n p\right\}$, and $S_{n}=S_{n}^{\prime} \cup S_{n}^{\prime \prime}$. Denote by ψ_{r} the primitive real character modulo r. For $t=(a, b, c) \in S_{n}$, put $\xi(t)=\psi_{4 p}(4 a)$ when $t \in S_{n}^{\prime}$, and $\xi(t)=\psi_{p}(c) \psi_{4}(4 a)$ when $t \in S_{n}^{\prime \prime}$, denote by T_{n} the complete set of representatives of $\Gamma_{0}(2)$ equivalence classes in S_{n}, and let $C\left(t, \Gamma_{0}(2)\right)$ be the geodesic or the rectifiable curve on H defined in p. 101 of [3] for a binary quadratic form $a x^{2}+b x y+c y^{2}$. Denote also $\left\langle, ; \Gamma_{0}(2), 2 m, w\right\rangle$ simply by \langle,$\rangle . Then,$ by comparing Fourier coefficients of both sides of the equality in Proposition 4, we get

Theorem 1.

$$
\begin{aligned}
& 2^{-m+3}(-i)^{m} \sqrt{p}\left(\mathfrak{G}\left(\chi_{j}\right)^{-1} \overline{a_{j}(p)} a_{j}(n)\left\langle G_{j}, G_{j}\right\rangle\left\langle g_{j}, g_{j}\right\rangle^{-1}\right. \\
& \quad=\sum_{t=(a, b, c) \in T_{n}} \xi(t) \int_{\sigma\left(t, \Gamma_{0}(2)\right)} G_{j}(z)\left(a-b z+c z^{2}\right)^{m-1} d z .
\end{aligned}
$$

For $G(z)=\sum_{n=1}^{\infty} c(n) e(n z)$ and a character χ, put $L(s, G, \chi)$ $=\sum_{n=1}^{\infty} c(n) \chi(n) n^{-s}$. It is easy to see that $T_{p}=\{t(k)=(k / 4, p, 0) \mid k \bmod 4 p$,
$(k, 4 p)=1\}$. Since $C\left(t(k), \Gamma_{0}(2)\right)$ is the geodesic line from $i \infty$ to $k / 4 p$, the summand of the equality in Theorem 1 becomes

$$
\chi_{p}(k) \int_{i \infty}^{k / 4 p} G_{j}(z)(-k / 4 p+z)^{m-1} d z
$$

in case $n=p$, and we especially get the following theorem due to Waldspurger :

Theorem 2.

$$
2\left\langle G_{j}, G_{j}\right\rangle\left\langle g_{j}, g_{j}\right\rangle^{-1}\left|a_{j}(p)\right|^{2}=(m-1)!\pi^{-m} p^{m-1 / 2} L\left(m, G_{j}, \chi_{p}\right) .
$$

We note that Waldspurger proved Theorem 2 under more general settings and that our method also can apply to the general cases.

Finally we correct errata related to our present results in the previous papers. The constant c in Theorem of [6] is not correct. The correct value is $(-1)^{\lambda} N^{\lambda / 2+1 / 4} 2^{-3 x+2} \cdot\binom{s^{2}-2 n}{p}^{\nu p}$ on the eighth line in p. 187 of [5] should read $\left(\frac{2 s^{2}-4 n}{p}\right)^{\nu_{p}}$.

References

[1] G. Shimura: On the trace formula for Hecke operators. Acta Math., 132, 245-281 (1974).
[2] -: On modular forms of half integral weight. Ann. of Math., 97, 440481 (1973).
[3] T. Shintani: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J., 58, 83-126 (1975).
[4] W. Kohnen and D. Zagier: Values of L-series of modular forms in the middle of the critica (preprint).
[5] S. Niwa: On Shimura's trace formula. Nagoya Math. J., 66, 183-202 (1977).
[6] -_: Modular forms of half integral weight and the integral of certain theta-functions. ibid., 56, 147-161 (1974).
[7] J. L. Waldspurger: Correspondance de Shimura. J. Math. Pures et Appl., 59, 1-133 (1980).
[8] M. F. Vignéras: Valeur au centre de symétrie des fonctions L associées aux formes modulaires. Séminaire Delange-Pisot-Poitou, pp. 331-356 (1980).
[9] J. L. Waldspurger: Sur les coefficients de Fourier des formes modulaires de poids semi-entiers. J. Math. Pures et Appl., 60 (1981).

