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On the Inducing of Unipotent Classes for Semisimple
Algebraic Groups. II
Case o Classical Type

By Takeshi HIRAI

Department o.f Mathematics, Kyoto University
(Communicated by Shokichi I.NAOA, M. J. A., Feb. 12, 1982)

Let G be a connected semisimple algebraic group over an algebra-
ically closed field K, and let C’= Ind,v C be as in the previous paper
[10]. In this paper, we give a simple method to determine the induced
class C’ from C when G is of classical type. The idea is the same as
that given in [9, 4-5] to treat the Richardson classes, and based only
on two well known fundamental results cited in 1. In this paper,
we only assume that the characteristic p of K is zero or a good prime
for G. Because of this assumption, we may work on the Lie algebra
version of the inducing (for type B, C or D, using the Cayley trans-
form in [11, 3.14] for example). Let be the Lie algebra of G, p its
parabolic subalgebra, a Levi subalgebra and the nilpotent radical
of p. For a nilpotent class C of , the induced class C’---Ind,,, C is
defined as the unique class which intersects C-a densely.

1. We list up here two fundamental facts on unipotent or
nilpotent classes, which play decisive roles in our method. Assume
that G be simple from now on. Let X e be nilpotent and put G(X)
Ad (g)X g e G}. Then it is convenient for us to use as a parameter

of the class G(X) the Jordan normal form of X. For types A, B, C
and D, we put N--nW 1, 2n-1, 2n and 2n respectively. Let X be
conjugate under G--SL(N,K) to J(p)J(p.)...J(p),
>p>0, pp...p--N, where J(p) is the pp Jordan matrix
with entries 1 just above the diagonal and zero except there. We say
that X and its class G(X) are both of Jordan type -(p, p,..., p),
and the latter is also denoted as 0(), when determines the class
uniquely. For type D with n even, if all p’s are even, exactly two
classes correspond to the same . In this case we denote by 0() the
union of these two classes.

We realize of type B,D or C as a subalgebra of --(N, K)
consisting of X e such that XJ-t-JX--O for J-L or

.0L= 0= 1
(type n n).
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Here 0 denotes the zero matrix of degree n. Then,
Theorem A [11, pp. 257-258]. Le$ be of type Bn or Dn (resp.

of type C). For X e g, let G(X) be its con]ugacy class under G.
Then G(X) is empty or equal to 0() for the Jordan type of X.
I is no$ empty if and only if =(p, p, ..., ps) satisfies the condition
(BD1) (resp. (C1)) given below. Let %=i p=]} for ]1, then

(BD1) r is even for even ]; and (C1) r is even for odd ].
We define the dual partition=[n, n, ..., n] of as the pai-

tion of N given by
n=r+r++ +r (lit),

if %=0 for ]t. We call a Jordan typ a a G-Jordan type i it
satisfies (BD1) or (C1) according to the type o G. Denote by Jor.the
set o all G-Jordan types (or a fixed N).

For a subset E o g, we denote by C1 (E) the (Zariski) closure of
E, and by Jor (E) the set o G-Jordan types a (or N) such that Oo(a)
cE, and put G(E)= {Ad (g)X X e E, g e G}. For two G-Jordan types
a,a’ for N, we define aa’, i Cl(Oo(a))O(a’). If G=G, w
denote also by . Note that a a’ implies a a’. (The con-
verse is also true as is proved using Theorem B below. But this is
not necessary in the 2ollowing.) Any nilpotent class in (under G) is
open in its closure. So the relation is actually a paial order, and
for a G-Jordan type a,

Jor (C1 (O(a)))= {a’ a a’}=Joro (a) (put).
Note that Joro (a) contains a unique maximal element a. For G=G,
we denote Jor(a) also by Jor (a). Then we have JorJor (a)
Jor (a)or a G-Jordan type a. (By the remark above, this inclu-
sion is actually an equality.)

Theorem B [8]. Let a=(p, p, ..., p), a’=(p, p, ..., p’,) be two
Jordan types for N. Then ’ if and only if

p+p+ +pp+p+ +p for ]1,
where we put p=0 for ]s, and similarly for p..

2. Tpe A. Let a=(p,p, ...,p) be a Jordan type or N.
We call the dual partition a =[n, n,...,n] the parabolic type as-
sociated to a. Let 3=[d, d,..., d] be an ordered partition of N.
Denote by [] and [3] the subalgebras o =(N, K) consisting of
elements X o the ollowing orms respectively:

x 0 Oa
Oa *

where $(d,). Then []=[][] a parabolic sbalgebra
called of type . We have C1 (O())=G([]).
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The subalgebra I[3] is isomorphic to {(x) e I]<< gi(d, K);
<<tr(x)--0}, under X(x). By this isomorphism, a conjugacy
class C in [] of nilpotent elements X is parametrized by (, ., ., )
and denoted as C(, .,..., flu), where fl denotes the Jordan type (for
d) of x. Let fl[ be the parabolic type associated to fl, and denote by
Ind[fl;,/[, ...,fl] the parabolic type (for N--d+d.+...+d) ob-
tained by simply arranging fl,[,.., in this order. We have the
following.

Theorem 1. Let g=g-----(N, K), and be a partition of N. Let
p=p[/] be the parabolic subalgebra of type , and put =[]. Let C
be a con]ugacy class C(fl, flz, ., fl) in with Jordan type (fl, flz, ., fl).
Then the parabolic type of the induced class C’=Ind,, C is given by
Ind [/9,/9;,..., fl:], and its Jordan type is given by [Ind [fl, fl[,...,

We remark here that this theorem is also proved by T. Tanisaki.

3. TypeB, CorD. Now letGbeotypeB,C orD. Let
,=(q, qz, ., q) be any (G-)Jordan type for N q,/> q/> /> q, q

+q+. +q N. We define an operation To on . to get a G-Jordan
type rom it. For G o type B or D, we define T=T as ollows.
Let T a (p, p., p).

(BDi) If q is odd, put p=q.
(BDii) Let q be even, and suppose p’s have been already defined

for all l<]. Put I={i;i>], q=q}. (Case 1) If I is even, then we
put p=q for all i e I. (Case 2) Suppose ,I is odd. Let k be the big-
gest element in I, and q the first even number after q (q are all odd
for k<i<m). Then we putp=q-l, p=q+l, p=q for/e/, :/:k.
Adding q/=0 if necessary, we repeat this process until the end.

If G is of type C, we define a= T,= Tc" by the processes (Ci) and
(Cii), which are obtained from (BDi) and (BDii) by replacing even and
odd in italic by odd and even respectively. Note that T is an exten-
sion of the Spaltenstein mapping in [4, p. 225] in the case of Richardson
classes. The following is proved by using Theorem B.

Lemma. Let be any (G-)Jordan type for N. If a for a

G-Jordan type , then T .
For any parabolic type 5, we denote by (To v)3 or by / the

Jordan type T(/ ).
We call an ordered partition =[d, d, ..., d.u_] of N a G-parabolic

type if it satisfies d=d_ (1<i<u-1) (d=0 is admitted). We denote
it as = Ida, d, ., du_ du]. We put [/] =g Q [/], u[] =g [/] for

the subalgebras [/], [/] of g. Then p[5]=[]+u[/] is a prabolic
subalgebra of g, and an element X e [] is a blockwise diagonal matrix
diag (x, x, ., x_, x, y_, ., y), where x e g(d, K) for 1<i<u- 1,
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X e o(d,K) or e p(d/2,K) according to the type o G, and y

LxL or l<i<u-1. The correspondence X(x) gives an
isomorphism of [] onto ]-[ <<_ (d, K) o(d, K) (or p(d/2, K)
resp.). Under this isomorphism, a nilpotent class o [3] is parame-
trized by a system o Jordan types o x’s" (, , .-.,

_
), where

fl, if d=/=0, satisfies (BD1) or (C1) accordingly. Then we define
Ind [fl/,/, ...,/_; fl:] as the G-prabolic type for N given by
Ind [fl/, ;, ..., fl:_, fl:, fl:_, ..., fl;, fl/]. The following is our second
main theorem.

Theorem 2. Let G be of type Bn, Cn or D, and 3a=[dl, d2,...,
d_;d] a G-parabolic type. Put p=p[/], =[3]. For a nilpotent
class C with Jordan type (ill, f12,..., fl_ ;fl), let C’-Indt C be its
induced class. Then the Jordan type of C’ is given by (T v) Ind [fl/,
;, ..., :_ ].

As consequence of this theorem, we can characterize Richardson
classes and fundamental classes (those which can not be induced from

Theorem 3. Let G be of type B, C or D. Let C be a nilpotent
class of with G-Jordan type a=(p, p., ..., Ps). (i) C is a Richardson
class corresponding to the parabolic subalgebra p[3a] with G-parabolic

v for =[d, d2,type [d, d., ., d_ d] if and only if a
d_, d, d_, ..., d,]. (ii) C is fundamental if and only if the multi-
plicities rj={i; p=]} satisfy the following" if rj=/=O, then r=/=O for
any i<] and r2 for ] odd (resp. even) when G is of type B or D
(resp. of typ C).

We remark that the assertion (i) is essentially given in [4]. For
the further study of Richardson classes, see [5] and also [9, 4-5].
The condition on a in (ii) is exactly the condition for that a can not be
expressed as fl for a partition fl=[b, b, ..., b] of N with b not all
different.

4. Sketch of the proof of Theorem 2. We know that in

Jor (C1 (C’)), there exists unique maximal (with respect to ) G-
Jordan type a’ which corresponds to C’. On the other hand, C-G(C)
is a G-conjugacy class. Consider G-parabolic type 3 in Theorem 3
and G-induced class C=Ind,,_ C. Then by Theorem 1, its G-
Jordan type y is given by , [Ind [fl/, fl;, ..., fl:_ fl:]]. Thus we see
that Jor Jor (y)DJor (C1 (C’)). By Lemm, the left hand side con-
tains a unique maximal element T, with respect to . So we have

TT a’.
To prove Tv,--’, it is sufficient to find nilpotent element Y with

G-Jordan type To, from C+n, because C1 (C’)DC+n. We can choose
Y by reducing the situation essentially to each simple step in the
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operation T: replacement of (q, q) by (q-l, q+ 1) (for the above,, m=k+l always), and then by checking each step explicitly. The
detail is quite similar as the discussions in [9, 4-5].

Note. I used in [5, 4] Mizuno’s result on the structure constants for type
Es in [7, Table 12], in case of type E. So it would be better remarking here a
complete correction to the Table 12: (1) add "+" at (12,37) (misprint); (2)
change signs at (I,J) and (J,I) for (I,J)--(32,145), (107,57), (38,145), (44,
145), (112, 145), (120, 58).
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