22. A Characterization of the Intersection Form of a Milnor's Fiber for a Function with an Isolated Critical Point

By Kyoji SAITO

Research Institute for Mathematical Sciences, Kyoto University (Communicated by Kunihiko Kodaira, M. J. A., Feb. 12, 1982)

§ 1. Introduction and the statements of the main results. Let $f: C^{n+1}, 0 \rightarrow C$, 0 be a germ of a holomorphic function at $0 \in C^{n+1}$ with an isolated critical point. Due to Milnor [2], for r and ε sufficiently small with $0 < \varepsilon \ll r \ll 1$, the restriction

$$f: \{x \in \mathbb{C}^{n+1}: |x| < r\} \cap \{|f| = \varepsilon\} \longrightarrow \{t \in \mathbb{C}: |t| = \varepsilon\}$$

of f defines a fibration whose general fiber F is a bouquet of n-spheres so that the middle homology group $H_n(F, \mathbb{Z})$ is nonvanishing.

Using Poincaré duality $H_n(F, Z) \simeq H^n(F, \partial F, Z)$, one gets an intersection form $\langle , \rangle : H_n(F, Z) \times H_n(F, Z) \to Z$, which is symmetric or skew-symmetric according as n is even or odd.

For a computation of the intersection form, we used in [3] the following fact.

Theorem 1. A complex valued bilinear form B on $H_n(F, Z) \otimes C$ is a constant multiple of the intersection form if B is invariant under the total monodromy group action on $H_n(F, Z)$, except for the case when f at 0 is nondegenerate (i.e. ordinary double point) and n is odd. Here the total monodromy group is by definition the image of the fundamental group of the complement of the discriminant loci of a universal unfolding of f.

Since this fact seems still not generally well-known, we publish it here with a proof separately from [3]. In § 2 we give a somewhat abstract lemma characterizing invariant bilinear forms.

§ 2. The uniqueness lemma for an invariant bilinear form. Let V be a vector space over a field k with ch $k\neq 2$ and let $\langle , \rangle \colon V \times V \to k$ be a k-bilinear form which is either symmetric or skew-symmetric.

Let A be a subset of V. In case \langle , \rangle is symmetric, we assume $\langle e,e \rangle = 2$ for all $e \in A$. Let us associate the graph $\Gamma(A)$ to such A as follows. The set of vertices of $\Gamma(A)$ is in a one-to-one correspondence to A so that we identify them. Two vertices e and e' of A are connected by a 1-simplex if and only if $\langle e,e' \rangle \neq 0$.

Let W(A) be the subgroup of GL(V) generated by the set of reflexions σ_e for $e \in A$, where

$$\sigma_e(u) := u - \langle u, e \rangle e$$
 for $u \in V$.

One checks easily that the group W(A) leaves the form \langle , \rangle invariant. Now we formulate our lemma.

Lemma 2. Assume that i) the graph $\Gamma(A)$ is connected and that ii) V is generated by the elements of A over k. Then a bilinear form $B: V \times V \rightarrow k$ is a constant multiple of $\langle \ , \ \rangle$, if it is invariant under the action of W, i.e.

$$B(u, v) = B(wu, wv)$$
 for $\forall u, v \in V, \forall w \in W$,

except for the case when $\sharp A=1$ and \langle , \rangle is skew-symmetric.

Proof. For $e \in A$, the relation $B(u,v) = B(\sigma_e u, \sigma_e v)$ implies the relation

1)
$$\langle u, e \rangle B(e, v) + \langle v, e \rangle B(u, e) - \langle u, e \rangle \langle v, e \rangle B(e, e) = 0$$

for all $u, v \in V$.

The assumptions on A in the lemma imply the existence of $e' \in A$ such that $\langle e', e \rangle \neq 0$. By taking v in 1) to be e' we get the formula

2) $B(u, e) = \langle e', e \rangle^{-1} \{\langle e', e \rangle B(e, e) - B(e, e')\} \langle u, e \rangle$.

In other words, for any $e \in A$, there exists a constant $\alpha(e) \in k$ such that

2)' $B(u, e) = \alpha(e) \langle u, e \rangle$ for all $u \in V$.

An analogous computation shows also that for any $e \in A$, there exists a constant $\beta(e) \in k$ such that

3) $B(e, v) = \beta(e)\langle e, v \rangle$ for all $v \in V$.

Let us check that $\alpha(e) = \beta(e)$ for any $e \in A$.

If \langle , \rangle is symmetric, it follows from the facts $B(e,e) = \alpha(e)\langle e,e \rangle = \beta(e)\langle e,e \rangle$ and $\langle e,e \rangle = 2$. If \langle , \rangle is skew-symmetric $B(e,e) = \alpha(e)\langle e,e \rangle = 0$. Then substituting 2)' and 3) in 1), we obtain $\langle u,e \rangle \langle v,e \rangle (-\beta(e) + \alpha(e)) = 0 \ \forall u,v$, which implies $\alpha(e) = \beta(e)$.

For e and $e' \in A$ let us compute $B(e', e) = \alpha(e) \langle e', e \rangle = \beta(e') \langle e', e \rangle$. If e and e' are combined in $\Gamma(A)$ i.e. $\langle e', e \rangle \neq 0$ then one gets

$$\alpha(e) = \beta(e')$$
.

Since $\Gamma(A)$ is connected (assumption i)), $\alpha(e) = \beta(e)$ is a constant $\gamma \in k$ independent of $e \in A$. The second assumption that A generates V then implies that

$$B(u, v) = \gamma \langle u, v \rangle$$
 for all $u, v \in V$. Q.E.D.

§ 3. A proof of Theorem 1. In Lemma 2, take V to be $H_n(F, \mathbb{Z})$ $\otimes \mathbb{C}$ and take $(-1)^{n(n-1)/2} \langle , \rangle$ to be the intersection form.

Let $A = \{e_1, \dots, e_{\mu}\}$ be a strongly distinguished basis of $H_n(F, Z)$ which automatically satisfies the condition ii) of Lemma 2 (cf. Appendix of Brieskorn [1]). The condition i) of Lemma 2 is also automatically satisfied, since the discriminant of a universal unfolding of f is irreducible, and its generic singularity is a cusp of (2,3) type. The Picard-Lefschetz formula says that W(A) is the total monodromy group.

The exceptional case in Lemma 2 corresponds to the exceptional case in Theorem 1.

The author is grateful to M. Saito who asked to publish this result.

References

- [1] Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscripta math., 2, 103-160 (1970).
- [2] Milnor, J.: Singular points of complex hypersurfaces. Ann. of Math. Studies, No. 61, Princeton (1968).
- [3] Saito, K.: On periods of primitive integrals. Harvard (1980) (preprint).