21. C_{l}-Metrics on Spheres

By Kazuyoshi Kiyohara
Department of Mathematics, Hokkaido University
(Communicated by Kunihiko Kodaira, m. J. A., Feb. 12, 1982)

1. Let (M, g) be a riemannian manifold. Then we call g a $C_{l^{-}}$ metric if all of its geodesics are closed and have the common length l. As is well-known, the standard metric on the unit sphere S^{n} is a $C_{2 n}{ }^{-}$ metric. Suppose $\left\{g_{t}\right\}$ is a one-parameter family of $C_{2 \pi}$-metrics on S^{n} such that g_{0} is the standard one. Put

$$
\left.\frac{d}{d t} g_{t}\right|_{t=0}=h .
$$

We call such a symmetric 2 -form h an infinitesimal deformation. It is known that each infinitesimal deformation h satisfies

$$
\begin{equation*}
\int_{0}^{2 \pi} h(\dot{\gamma}(s), \dot{\gamma}(s)) d s=0 \tag{*}
\end{equation*}
$$

for any geodesic $\gamma(s)$ of (S^{n}, g_{0}) parametrized by arc-length (cf. [1] p. 151). V. Guillemin has proved in [2] that in the case of S^{2} the condition ($*$) is also sufficient for a symmetric 2-form h to be an infinitesimal deformation.

The purpose of this note is to show that the situation is completely different in the case of $S^{n}(n \geqq 3)$. We shall give another necessary condition for a symmetric 2 -form h to be an infinitesimal deformation (Theorem 1). And we shall give a partial result for what h satisfies this condition (Propositions 2, 3).
2. We denote by \mathcal{K}_{2} the vector space of symmetric 2 -forms on S^{n} which satisfy (*). Let \#: $T^{*} S^{n} \rightarrow T S^{n}$ be the bundle isomorphism defined by

$$
g_{0}(\#(\lambda), v)=\lambda(v), \quad \lambda \in T_{x}^{*} S^{n}, \quad v \in T_{x} S^{n}, \quad x \in S^{n} .
$$

Let E_{0} be the function on $T^{*} S^{n}$ such that

$$
E_{0}(\lambda)=\frac{1}{2} g_{0}(\#(\lambda), \#(\lambda)), \quad \lambda \in T^{*} S^{n} .
$$

Consider the usual symplectic structure on $T^{*} S^{n}$, and let $X_{E_{0}}$ be the symplectic vector field on $T^{*} S^{n}$ defined by the hamiltonian $E_{0} . \quad E_{0}$ and $X_{E_{0}}$ are called the energy function and the geodesic flow associated with the metric g_{0} respectively. We denote by $\left\{\xi_{t}\right\}$ the one-parameter group of transformations of $T^{*} S^{n}$ generated by $X_{E_{0}}$. Then $\left\{\xi_{t}\right\}$ induces a free S^{1}-action of period 2π on the unit cotangent bundle $S^{*} S^{n}$. We define an operator $G: C^{\infty}\left(S^{*} S^{n}\right) \rightarrow C^{\infty}\left(S^{*} S^{n}\right)$ by

$$
G(f)(\lambda)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\xi_{t} \lambda\right) d t, \quad \lambda \in S^{*} S^{n}, \quad f \in C^{\infty}\left(S^{*} S^{n}\right)
$$

Let $\widetilde{\mathcal{H}}_{2}$ be the vector space of functions on $T^{*} S^{n}$ which are quadratic forms on each fibre $T_{x}^{*} S^{n}\left(x \in S^{n}\right)$, and let \mathscr{H}_{2} be the vector space of functions on $S^{*} S^{n}$ which are the restrictions of elements of $\overline{\mathcal{H}}_{2}$ onto $S^{*} S^{n}$. For each $h \in \mathcal{K}_{2}$ we define a function \hat{h} on $T^{*} S^{n}$ by

$$
\hat{h}(\lambda)=h(\#(\lambda), \#(\lambda)), \quad \lambda \in T^{*} S^{n} .
$$

Moreover, let $X(h)$ be a homogeneous symplectic vector field on $T^{*} S^{n} \backslash\{0$-section $\}$ such that $X(h) E_{0}=\hat{h}$. We should remark that $X(h)$ exists for any $h \in \mathcal{K}_{2}$, but is not unique. We now define a symmetric bilinear map $F: \mathcal{K}_{2} \times \mathcal{K}_{2} \rightarrow C^{\infty}\left(S^{*} S^{n}\right)$ by

$$
F(f, h)=G(X(f) \hat{h}), \quad f, h \in \mathcal{K}_{2} .
$$

It is easy to see that F is well-defined and is symmetric.
Then our first result is
Theorem 1. Let $\left\{g_{t}\right\}$ be a one-parameter family of $C_{2 \pi}$-metrics on S^{n} with g_{0} being the standard one. Put $\left.(d / d t) g_{t}\right|_{t=0}=h$. Then we have $\boldsymbol{F}(h, h) \in G\left(\mathcal{H}_{2}\right)$.
Remark. For S^{2} it is known that $G\left(C^{\infty}\left(S^{2}\right) E_{0}\right)=G\left(\mathcal{H}_{2}\right)=$ Image of G. Thus the assertion of Theorem 1 has no meaning in this case.

The proof of Theorem 1 is based on the following lemma which is due to A. Weinstein (cf. [1] p. 122).

Lemma. Let $\left\{g_{t}\right\}$ be as before, and let $\left\{E_{t}\right\}$ be the corresponding energy functions. Then there is a one-parameter family of homogeneous symplectic diffeomorphisms $\left\{\phi_{t}\right\}$ of $T^{*} S^{n} \backslash\{0$-section $\}$ such that ϕ_{0} $=$ identity and $\phi_{t}^{*} E_{0}=E_{t}$.

After differentiating both sides of the formula $\phi_{t}^{*} E_{0}=E_{t}$ two times in the variable t at $t=0$, we apply G to this formula. Then we have Theorem 1.
3. We shall give a partial result for what h satisfies the condition $F(h, h) \in G\left(\mathscr{H}_{2}\right)$. Consider S^{n} as the unit sphere in R^{n+1}, and let $\iota: S^{n} \rightarrow \boldsymbol{R}^{n+1}$ be the inclusion. Let $x=\left(x_{1}, \cdots, x_{n+1}\right)$ be the canonical coordinate functions on \boldsymbol{R}^{n+1}. Let P_{m} be the vector space of homogeneous polynomials $f(t, s)$ of degree m in two variables (t, s) whose degrees in the variable s are at most 1.

Proposition 2. Consider a polynomial $f(x)$ of the form

$$
f(x)=f_{1}(x)+f_{3}(x)+\sum_{m=2}^{k} h_{2 m+1}\left(\sum_{i=1}^{n+1} a_{i} x_{i}, \sum_{i=1}^{n+1} b_{i} x_{i}\right)
$$

where $f_{1}(x)\left(\right.$ resp. $\left.f_{3}(x)\right)$ is a polynomial of degree 1 (resp. degree 3) in the variables $x=\left(x_{1}, \cdots, x_{n+1}\right), h_{2 m+1} \in P_{2 m+1}$, and a_{i}, b_{i} are real constants. Then we have

$$
F\left(\left(\iota^{*} f\right) g_{0},\left(\iota^{*} f\right) g_{0}\right) \in G\left(\mathcal{H}_{2}\right)
$$

Proposition 3. Let $f(x)$ be a homogeneous polynomial of degree
$2 k+1(k \geqq 2)$ in the variable $x=\left(x_{1}, \cdots, x_{n+1}\right)$. Assume either $f(x)$ is a polynomial in only two variables $\left(x_{1}, x_{2}\right)$ in case $n \geqq 3$, or each irreducible components of $f(x)$ in $C[x]$ are also irreducible in $C[x] /\left(\sum_{i=1}^{n+1} x_{i}^{2}\right)$ in case $n \geqq 4$. Suppose the symmetric 2 -form ($\left.\iota^{*} f\right) g_{0}$ on S^{n} satisfies the condition $\boldsymbol{F}\left(\left(\iota^{*} f\right) g_{0},\left(\iota^{*} f\right) g_{0}\right) \in G\left(\mathcal{F}_{2}\right)$. Then there is a polynomial $h(t, s)$ in $P_{2 k+1}$ and real constants a_{i}, b_{i} such that $f(x)=h\left(\sum_{i=1}^{n+1} a_{i} x_{i}, \sum_{i=1}^{n+1} b_{i} x_{i}\right)$.

For example, let $f(x)=x_{1}^{2 k+1}+x_{2}^{2 k+1}(k \geqq 2)$. Then $\left(\iota^{*} f\right) g_{0}$ satisfies (*). But it is clear that $f(x)$ cannot be written in the form $h\left(\sum_{i} a_{i} x_{i}\right.$, $\sum_{i} b_{i} x_{i}$) for any $h \in P_{2 k+1}$. Therefore there is no $C_{2 \pi}$-deformation $\left\{g_{t}\right\}$ of g_{0} such that $\left.(d / d t) g_{t}\right|_{t=0}=\left(\iota^{*} f\right) g_{0}$.

Remark. Let $f(x)$ be a polynomial of the form in Proposition 2 such that $f_{3}=0$ and $\left(a_{i}\right)$ and $\left(b_{i}\right)$ are linearly dependent. Then it is known that $\left(\iota^{*} f\right) g_{0}$ is really an infinitesimal deformation (Weinstein's example, cf. [1] p. 120). For any other case in Proposition 2 we do not know whether $\left(\iota^{*} f\right) g_{0}$ is an infinitesimal deformation or not.

The detailed proof will appear elsewhere.

References

[1] A. Besse: Manifolds All of Whose Geodesics are Closed. Springer-Verlag (1978).
[2] V. Guillemin: The Radon transforms on Zoll surfaces. Adv. in Math., 22, 85-119 (1976).

