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1. Introduction. In this paper we announce two theorems on
regular elliptic conjugacy classes of the Siegel modular group of
degree 2n. The detailed discussion with proof will appear elsewhere.
For the general modular group GL(n,Z), it was shown by C.G.
Latimer and C. C. MacDuffee [3] and O. Taussky [4] that the number
of conjugacy classes, which have an irreducible characteristic poly-
nomial, is equal to the number of ideal classes of a subring in a certain
algebraic number field. Especially, if the characteristic polynomial
of a conjugacy class is a cyclotomic polynomial f, then that ring consists
of all algebraic integers in the splitting field of f over Q.

Let F=Sp(2n, Z) be the Siegel modular group of degree 2n. Con-
cerning the conjugacy classes of F, we get some results analogous to
the above mentioned result for GL(n, Z). Our results in this paper
are an existence proof of the "regular elliptic elements" in F and a
formula in class number for the "regular elliptic elements" of F.
We shall state our results more precisely after the preparations in 2.

2. Preliminaries. Let G =Sp(2n, R) be the real symplectic group
of degree 2n. The group G is defined by
(2.1) G= {g e GL(2’q, R) tgJg=J}

where J=( 0 )__ln and 1 is the identity matrix of degree n. Let (R)

be the set of all positive definite symmetric matrices in G. Then (R) is
identified with the Siegel upper half space. The group G acts on (R)

by the rule G (R) (g, p)-gpg e (R).

Definition 1. An element g in G is called elliptic if g fixes an
element in (R).

Let O(2n) be the orthogonal group of degree 2n and put K=O(2n)
G. Then K is a maximal compact subgroup of G. It is easily seen

that an element h in G is elliptic if and only if h is conjugate to an
element in K.

Let us define a regular element in G. We denote the Lie algebra
of G by g. The adjoint action of G on g is defined by

Ad(g)X=gXg-, g e G, X e g.
The rank r(G) of G is defined by the following formula:



No. 3] Regular Elliptic Conjugacy Classes in Sp(2n, Z) 121

r(G) Min dim Ker(Ad(g) 1).

The rank of Sp(2n, R) is equal to n.
Definition 2. An element g in G is called regular if

dim Ker(Ad(g) 1) r(G).
Let F be the Siegel modular group Sp(2n, Z) o degree 2n. /" is the
set o all integral matrices in G.

Lemma. An element in 1" is regular (and)elliptic if and only
if the characteristic polynomial f of is decomposed into mutually
distinct cyclotomic polynomials over Q and the degree of any ir-
reducible factor of f over Q is >2.

3. Main theorems. Our first result is the 2ollowing.
Theorem I. Let f be the mth cyclotomic polynomial with degree

2n=(m) where is the Euler function. Then the Siegel modular
group Sp(2n, Z) has a regular elliptic element with the characteristic
polynomial f.

For a fixed cyclotomic polynomial f with degree 2n, we put
F(f)= {. e F; the characteristic polynomial o , is f}.

Definition 3. Two elements . and ,’ in F(f) are called F-
(respectively G-)conjugate if there exists 3n element g in F (respec-
tively in G) such that g7g- =’.

The set F(f) is divided into a certain number o2 the conjugate
classes. We denote the sets o G-conjugacy classes and F-conjugacy
classes in F(f) by F(f)/G and F(f)/F respectively. Each class F(f)
in F(f)/G is divided into F-conjugate classes. We denote the set of
these classes by F(f)/F. F(f)/F is a subset o2 F(f)/F.

Let A be the ideal class group of the splitting field k of the cyclo-
tomic polynomial f over Q.

Notations. ko" the real subfield of k with [k" k0]=2.
C(a)" the class in A containing a given 2ractional ideal a in k.
H" the subgroup of A defined by H={C(a) Na is principal in k0},

when N means the norm from k to k0.
H the subgroup o H defined by H {C(a) Na =(w), w is totally

positive in k0}.
E (resp. E0)" the unit group o k (resp. k0).
E" the group o all totally positve units in k0.
ISI" the number o elements in a given finite set S.
(L’M)" the index o2 a subgroup M in L.

Under these notations we have the following theorem.
Theorem II. Let F be the Siegel modular group of degree 2n

and f be the ruth cyclotomic polynomial with the degree 2n-(m).
Then we have
( 1 ) IF(f) / G] =(Eo" E)(H" H/),
( 2 ) IF(f)/F[=(E NE)[H+I



122 H. IIDORIKAWA [Vol. 58 (A),

for each class Fa(f) in F(f)/G where NF={N; e E}.
txample. Let f(t) t+ t+ t+ t+ 1. Then f is the 5th cyclo-

tomic polynomial over Q. For the groups F=Sp(4, Z) and G=Sp(4, R),
the number o conjugacy classes is as follows.

(1) IF(f)/G]=2, (2)
4. Outline of the proofs of the theorems. Let f be a fixed

cyclotomic polynomial with degree 2n and 5 is a root of f--0. By
k-- Q(5) (resp. k0= Q(5+ -)), we denote the field generated by
(resp. +5-) over Q. It is known that the ring o algebraic integers
(C) in k is generated by 1, , , ..., - over Z (c. H. Hasse [2]).

Let , be an element in F with the characteristic polynomial f and
x e k be an eigenvector of , corresponding to the eigenvalue . Since
the ring (C) is generated by 1, 5, , over Z and f is irreducible, we
have the following
(3.1) The entries of x generate a fractional ideal a in k.
(This fact is due to O. Taussky [4].) Let (x, y) be the canonical posi-
tive definite Hermitian form on CC and G(k/Q) be the Galois
group o k over Q. Then or each eigenvector x of , corresponding
to the eigenvalue 5, there exists x* in kn satisfying the following (3.2)
or any a in G(k/Q).

{10 i=1
(3.2) (a(x), x*)

if a=/= 1.
Since x* is an eigenvector o ,-’ and J7=J, we have the following
(3.3) Jx=2x* or an element 2 in k.
From these observations arises question; what is an ideal a which
has the system (x,x*, ) satisfying (3.1)-(3.3)? The answer to the
question given below constitutes the undamental lemma in this paper.
Let a be fractional ideal in k.

Lamina. A fractional ideal a in k has the system (x, x*, ) satis-
fying (3.1)-(3.3) if and only if Na is a principal ideal in ko.

Using the lemma, Theorem I cn be proved as ollows. Let a be
principal ideal in k. Then Na is principal in k0. Applying the

above lemma to a, there exists a system (x, x*, 2)stisying (3.1)-(3.3).
Followi,ng O. Taussky [4], we define
by a(x)=a(x) 2or a in G(k/Q). Since the entries in x generate the
ideal a, , belongs to GL(2n, Z). Furthermore since Jx--2x*, we have
tyjy=j. Thus . belongs to Sp(2n, Z) and f is the characteristic poly-
nomial o2 ,. Hence , is regular elliptic.

Remark. Let x and x* be the same as above nd put a =the ideal
generated by x, a*-the ideal generated by x*. Then the complex con-
jugate of a* is the socalled "complementary ideal of a" (cf. R. Dedekind
[1] or O. Taussky [5]).

The proof of Theorem II is also based on our undamental lemma.
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