# 31. Classification of Projective Varieties of 4-Genus One 

By Takao Fujita<br>Department of Mathematics, College of General Education,<br>University of Tokyo<br>(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1982)

Introduction. Let $V$ be a subvariety (=irreducible reduced closed subscheme) of a projective space $P^{N}$ defined over an algebraically closed field $\Re$ of any characteristic. Set $n=\operatorname{dim} V, d=\operatorname{deg} V$ and $m=\operatorname{codim} V$ $=N-n$. In this note we always assume that the restriction mapping $H^{\circ}\left(\boldsymbol{P}^{N}, \mathcal{O}(1)\right) \rightarrow H^{\circ}(V, L)$ is bijective, where $L=\mathcal{O}_{V}(1)$. Then $\Delta=d-m-1$ $=n+d-h^{0}(V, L)$ is the $\Delta$-genus of the polarized variety $(V, L)$ (cf. [1] etc.).

It is well-known that $\Delta \geqq 0$ for every $V$ as above. Moreover, we have the following

Theorem 0 (see, e.g., [1] if $\operatorname{char}(\Re)=0$ and [4] in general). If $\Delta=0$, then $V$ is one of the following types:

1) $\left(P^{n}, \mathcal{O}(1)\right)$.
2) $A$ hyperquadric.
3) A rational scroll. This means that $(V, L) \cong(\boldsymbol{P}(E), \mathcal{O}(1))$ for an ample vector bundle $E$ on $P^{1}$.
4) $A$ Veronese surface $\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right)$ in $\boldsymbol{P}^{5}$.
5) A generalized cone (this means that the set of the vertices may be a linear space of positive dimension) over a projective manifold of one of the above types 2)-4).

In this note we consider the case $\Delta=1$. Details and proofs will be published elsewhere.

As for non-singular varieties, we have the following
Theorem I (cf. [2] [3] and [4]). Let V be a projective non-singular variety as above with $\Delta=1$. Then the dualizing sheaf $\omega_{V}$ is isomorphic to $\mathcal{O}_{V}(1-n)$. Moreover, if $n \geqq 3$, then $V$ is one of the following types:

1) A hypercubic. $d=3$.
2) $A$ complete intersection of two hyperquadrics. $\quad d=4$.
3) A linear section of the Grassmann variety parametrizing lines in $P^{4}$, embedded by the Plücker coordinate. $\quad d=5$ and $n \leqq 6$.
4) (A hyperplane section of) the Segre variety $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ in $\boldsymbol{P}^{8}$. $d=6$.
5) The Segre variety $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ in $\boldsymbol{P}^{7} . \quad d=6$.
6) The blowing-up of $\boldsymbol{P}^{3}$ at a point. $\quad d=7$.
7) Veronese threefold $\left(\boldsymbol{P}^{3}, \mathcal{O}(2)\right)$ in $\boldsymbol{P}^{9} . \quad d=8$.

Remark. When $n=2, V$ is what is called a del Pezzo surface. $V$ is obtained from $\boldsymbol{P}^{2}$ by blowing-up at $(9-d)$ points on it, unless $V \cong$ $P^{1} \times P^{1}$. In particular, $d \leqq 9$.

Now we consider singular varieties. First we present a couple of trivial examples.

Let $W$ be a subvariety of a hyperplane $H$ in $\boldsymbol{P}^{N}$ such that the mapping $H^{0}\left(H, \mathcal{O}_{H}(1)\right) \rightarrow H^{0}\left(W, \mathcal{O}_{W}(1)\right)$ is bijective and that $\Delta\left(W, \mathcal{O}_{W}(1)\right)=1$. Take a point $v$ off $H$ and let $V$ be the union of all the lines passing $v$ and intersecting $W$. Then $V$ is a variety with $\Delta=1$ such that $H^{\circ}\left(\boldsymbol{P}^{N}, \mathcal{O}(1)\right) \rightarrow H^{\circ}\left(V, \mathcal{O}_{V}(1)\right)$ is bijective. In this case we say that $V$ is a cone over $W$.

Any hypercubic has the property $\Delta=1$. The same is true for any complete intersection of two hyperquadrics.

From now on, we assume that $V$ is none of the above types-not a cone, not a hypercubic, not a complete intersection of two hyperquadrics.

For the convenience of the statements about possible singularities of $V$, we make several definitions and introduce notations.

Definition. Let $x$ be an isolated singular point of a variety $X$. We consider the type of this singularity according to the completion of the local ring $\mathcal{O}_{X, x}$.

1) $x$ is said to be of type $\left(\mathrm{N}^{s}\right)$ if there are two analytic branches of $X$ at $x$, both of which are non-singular and of dimension $s$, and if they intersect transversally at $x$.
2) $x$ is said to be of type ( $\mathrm{C}^{s}$ ) if the normalization $X^{\prime}$ of $X$ is nonsingular and of dimension $s$, the mapping $f: X^{\prime} \rightarrow X$ is set-theoretically bijective and if Coker $\left(\mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{X^{\prime}}\right) \cong \mathcal{O}_{x} \cong \Omega$.
3) $x$ is said to be of type $\left(\mathrm{A}_{k}\right)$ if $\operatorname{dim} X=2$ and if $x$ is the hypersurface singularity defined by the equation $u v=w^{k}$.
4) $x$ is said to be of type ( $Q^{s}$ ) if the singularity is the same as that of the vertex of the affine cone of a non-singular hyperquadric of dimension $s-1$.

Remark. $\quad\left(Q^{1}\right)=\left(\mathrm{N}^{1}\right)$ and $\left(\mathrm{Q}^{2}\right)=\left(\mathrm{A}_{1}\right)$ as types of singularities. $\quad\left(\mathrm{N}^{1}\right)$ is a node of a curve. ( $\mathrm{C}^{1}$ ) is a simple cusp.

Definition. Let $S$ be the singular locus of a variety $Y$ and let $x$ be a simple point of $S$. Let $r$ be the dimension of $S$ at $x$. Taking $r$ general hyperplane sections passing $x$ successively we obtain a linear section $X$ of $Y$ which has an isolated singularity at $x$. If this is one of the above types (*), we say that $Y$ has a singularity of type (*) at $x$, or that $x$ is a singular point of $Y$ of type (*).

Definition. Let $T$ be a connected component of the singular locus of a variety $Y$. We say that $T$ is of type
$\boldsymbol{P}^{r}(*)$, if $T$ is an $r$-dimensional linear subspace of $\boldsymbol{P}^{N}$ and if $Y$ has a singularity of type (*) at every point on $T$;
$\left(\boldsymbol{P}^{r}, H\right)(*, * *)$, if $T$ is a linear subspace of dimension $r$ and if there exists a hyperplane $H$ on $T$ such that the singularity of $Y$ is of type (**) at every point on $H$ and is of type (*) at evrey point on $T-H$;
$\left(P^{r}, 2 H\right)(*, * *)$, if $T$ is a linear subspace of dimension $r$ and if there exists a non-singular hyperquadric $Q$ on $T$ such that the singularity of $Y$ is of type (**) at every point on $Q$ and is of type (*) at every point on $T-Q$.

Type $\boldsymbol{P}^{0}(*)$ is denoted simply by ( $*$ ).
Definition. We say that $V$ has a singularity of type $\left(*_{1}\right) \amalg \cdots$ $\amalg\left(*_{q}\right)$ if the singular locus consists of $q$ connected components $S_{1}, \cdots$, $S_{q}$ such that $S_{j}$ is of type ( $*_{j}$ ) for each $j=1, \cdots, q$.

Theorem II. Let $V$ be a projective variety with $\Delta=1$ as before (hence, not a cone, not a hypercubic, not a complete intersection of two hyperquadrics). Suppose that $V$ is not normal and let $f: V^{\prime} \rightarrow V$ be the normalization of $V$. Then
a) $V^{\prime}$ is non-singular and $\Delta\left(V^{\prime}, f^{*} L\right)=0$. Moreover, $V^{\prime}$ is of the type 3) in Theorem 0.
b) $V$ has a singularity of one of the following types:
$\left(\mathrm{N}^{n}\right),\left(\mathrm{C}^{n}\right),\left(\boldsymbol{P}^{1}, H\right)\left(\mathrm{N}^{n-1}, \mathrm{C}^{n-1}\right) ;$ these three are possible in any characteristic,
$\left(\boldsymbol{P}^{1}, 2 H\right)\left(\mathrm{N}^{n-1}, \mathrm{C}^{n-1}\right),\left(\boldsymbol{P}^{2}, 2 H\right)\left(\mathrm{N}^{n-2}, \mathrm{C}^{n-2}\right) ;$ these are possible only when $\operatorname{char}(\Re) \neq 2$,
$\boldsymbol{P}^{1}\left(\mathrm{C}^{n-1}\right),\left(\boldsymbol{P}^{2}, H\right)\left(\mathrm{N}^{n-2}, \mathrm{C}^{n-2}\right)$; these are possible only when char ( $\left.\Omega\right)$ $=2$.

In particular, the singular locus of $V$ is connected and is a linear space of dimension $\leqq 2$.

Theorem III. Let $V$ be a singular projective variety with $\Delta=1$ as before. Suppose that $V$ is normal. Then
a) $V$ is locally Gorenstein and $\omega_{V}=\mathcal{O}_{V}(1-n)$.
b) $(n, d)=(\operatorname{dim} V, \operatorname{deg} V)$ can take only the following values: $(2,8),(2,7),(2,6),(2,5),(3,6),(3,5),(4,6),(4,5)$ and $(5,5)$.
c) The possible singularities of $V$ with given $(n, d)$ is one of the following types.

Case $(2,8)$ : $\left(\mathrm{A}_{1}\right)$.
Case $(2,7)$ : $\left(A_{1}\right)$.
Case (2,6): $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{1}\right) \amalg\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right),\left(\mathrm{A}_{1}\right) \amalg\left(\mathrm{A}_{2}\right)$.
Case (2,5): $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{1}\right) \amalg\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right),\left(\mathrm{A}_{1}\right) \amalg\left(\mathrm{A}_{2}\right),\left(\mathrm{A}_{3}\right),\left(\mathrm{A}_{4}\right)$.
Case (3, 6) : (Q $\left.\mathrm{Q}^{3}\right), \boldsymbol{P}^{1}\left(\mathrm{~A}_{1}\right),\left(\mathrm{Q}^{3}\right) \amalg \boldsymbol{P}^{1}\left(\mathrm{~A}_{1}\right), \boldsymbol{P}^{1}\left(\mathrm{~A}_{2}\right)$.
Case (3,5): (Q $\left.{ }^{3}\right),\left(\mathrm{Q}^{3}\right) \amalg\left(\mathrm{Q}^{3}\right),\left(\mathrm{Q}^{3}\right) \amalg\left(\mathrm{Q}^{3}\right) \amalg\left(Q^{3}\right),\left(\mathrm{Q}^{3}\right) \amalg\left(\boldsymbol{P}^{1}, H\right)\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$, $\left(\boldsymbol{P}^{1}, H\right)\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right),\left(\boldsymbol{P}^{1}, H\right)\left(\mathrm{A}_{2}, \mathrm{~A}_{3}\right),\left(\boldsymbol{P}^{1}, H\right)\left(\mathrm{A}_{2}, \mathrm{~A}_{4}\right)$.

Case (4, 6) : $\boldsymbol{P}^{2}\left(\mathrm{~A}_{1}\right)$.
Case (4,5): $\boldsymbol{P}^{1}\left(\mathrm{Q}^{3}\right), \boldsymbol{P}^{1}\left(\mathrm{Q}^{3}\right) \amalg \boldsymbol{P}^{1}\left(\mathrm{Q}^{3}\right),\left(\boldsymbol{P}^{2}, H\right)\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$.
Case (5,5) : $P^{2}\left(Q^{3}\right)$.
In particular, $V$ has only rational hypersurface singularities, and every connected component of its singular locus is a linear space of dimension $\leqq 2$. There is no special phenomenon in case char $(\Re)=2$.

Outline of proofs of Theorems II and III. Take a singular point $v$ of $V$. Let $W$ be the closure of the union of all the lines connecting $v$ and another point on $V$. Then $\operatorname{dim} W=n+1$ and $\operatorname{deg} W \leqq d-2$. Hence $\Delta\left(W, \mathcal{O}_{W}(1)\right)=0$ and deg $W=d-2$. By virtue of Theorem $0, W$ is a generalized cone over a manifold $M$ of one of the types 2)-4) in Theorem 0 . Let $R$ be the set of vertices of $W$. Let $\tilde{W}$ be the blow-up of $W$ with center $R$ and let $\tilde{V}$ be the strict transform $V$ on $\tilde{W}$. Then $\tilde{W}$ is a $P^{r+1}$-bundle over $M$ associated with the locally free sheaf $\mathcal{O}_{M}(1)$ $\oplus \mathcal{O}_{M} \oplus \cdots \oplus \mathcal{O}_{M}$, where $r=\operatorname{dim} R$. $\tilde{V}$ is a divisor on $\tilde{W}$. We analyze all the possible cases according to the class of $\tilde{V}$ in $\operatorname{Pic}(\tilde{W})$.

## References

[1] T. Fujita: On the structure of polarized varieties with $\Delta$-genera zero. J. Fac. Sci. Univ. of Tokyo, 22, 103-115 (1975).
[2] -: On the structure of polarized manifolds with total deficiency one. I. J. Math. Soc. Japan, 32, 709-725 (1980).
[3] -: ditto. part II. ibid., 33, 415-434 (1981).
[4] - -: On polarized varieties of small 4 -genera (to appear).

