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Introduction. This paper shows that there exists strong solu-
tion in L of the nonstationry Nvier-Stokes system with some first
order boundary condition. To prove this we study the Stokes operator
with such boundary condition and use the semigroup approach in
Fujita-Kato [2], [8] and Gig-Miyakawa [7].

Let D be a bounded domain in R with smooth boundary S. We
consider the Navier-Stokes initial value problem concerning velocity
u=(u, ..., u) and pressure p:
(N) 3u/3t--lu+(u, 17)u+lzp=O, divu=0 in D(O, T), u]=o=a in D,
where (u, /7)--= u(3/3x). The boundary condition we give is
(NB) u.,=O, Bu=O on S(0, T).
Here denotes the interior unit normal vector t x e S and u.,=u’,

+... +u,. We assume that B is a first order boundary differential
operator and that Bu.,=O if u.,=0.

To study this Navier-Stokes system in Lp we define the Stokes
operator as follows. Let X (lp oo) denote the set of divergence
free vector functions w e L(D) satisfying w.,=0. Let P be the con-
tinuous projection from L(D) to X,; see [3]. Then we set A=-P/
with domain D(4)={ue W(D);Bu=O}X and call 4z the Stokes
operator with boundary condition B here W(D) denotes the Sobolev
space of order two.

Concerning A we shll show that --A generates an analytic semi-
group in Xp if B satisfies an appropriate algebraic assumption (see
the assumption (B) in 1) the slip boundary condition is included in
our case. Next we shall characterize D((I+L)) (0al) for large
L. We shall also study A*, the dual of A.

Following Kato-Fujita [2], [8], we transform (N), (NB) into the
evolution equation in X,
(AN) du/dt-+-ABu+P(u, lZ)u=O (tO), u(O)=a.
Using results on A, we get the existence and the uniqueness of a (local)
strong solution of (AN).

Since our methods are similar to those of Giga [4]-[6] and Gig-

Miyakawa [7] who studied the Dirichlet problem for (N), we do not
give the detailed proof here. However, our results generalize that of
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Miyakawa [9]. For different approach to (N), (NB), see Fabes-Lewis-
Riviere [1], Moglievskii [10], Solonnikov [11].

In what follows we fix lpc and denote by the norm in
L(D). We do not distinguish between the space o scMar and vector
valued unctions. We denote the norm in W(S) by

1. Construction of the resolven. First we state our assump-
tion on the boundary operator B--,__b(3/3x)+d, where b and d are
n n matrix-vMued unctions. Let p-() be an nn orthogonM
matrix which mps r to (0,..., 0, 1). For each x e S we denote by
B (l_]_n) the matrix Bx=p(,=pb)p-. Our assumption on B is

(B) There are some positive constants c and a such that

for all x e S, [arg 21<_w/2, 121>a, where k denotes the symbol of the
hydrodynamic potential K see e.g. [4]. Here [E]_ denotes the (n-1)

(n--1) matrix which consists of the first n--1 rows and columns
an n n matrix E.

This assumption (B) is similar to that of Fabes-Lewis-Riviere [1].
Note that the slip boundary condition is one of examples satisfying
(B); see [1], [11]. In what follows, we always assume (B).

As in [5], to study the resolvent it is enough to construct v--Vfg
that satisfies

(2--zl)v+tTq--O, divv--0 in D,
v v--O, Bv= g onS,

where q is some scalar unction. Let Yf be a pseudo-differential oper-
ator on S of order zero. Set

Tg=BK(s(R) Yg), Tg=K((R) Yg),
where s denotes the measure carried by S with density one and
denotes the trace on S. Let denotes the projection such that
=w-(,.w), 2or w e L,(S). Then the crucial step in constructing Vf is

Theorem 1. There exist a pseudo-differential operator Yf on S
of order zero and a smoothing operator J such that the estimates

I(Tf----J)w]o_C I1- IWlo, It. Tw[_C I[-IJw[o_l/2 IW]o for all w e L(S), [arg 21_/2,
holds for some constant C.

2. Results on the Stokes operator. Now we state operator-
theoretic properties of A. (cf. [5], [6]). In general we do not know
where the spectrum of A. are, so we consider A,=A,/L instead of
A. here L0 is so taken that the set {]Re 2_0} contains no spectrum
of A.

Theorem 2. There are positive constants C and such that
II(+A)-fll_Cll- [If, f eX

for all 2, ]arg
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Domains of ractional powers A can be characterized by
Theorem :. D(A) is the complex interpolation space [X, D(A)]..

In particular, D(A") is continuously embedded in the space of Bessel
potentials H"(D).

We can prove these theorems by using Theorem 1. Since the
proofs are similar to those of Theorem i in [5] and Theorem 2 in [6],
we omit the detail.

Concerning Az*, the dual o A in X, we have
Proposition 1. There is a boundary differential operator B’ such

that A*--A, as operators in X,, where 1/p-l/p’--1. Moreover, B’
satisfies the condition (B).

Proof. To show this proposition it is enough to prove the same
result or the Laplace operator L. in X; see the proo of Theorem 3
in [3]. Taking in (B) sufficiently large, we see that det [B]_, never
vanishes. From this and Green’s formula it follows that L*-L, for
some B’. Thus we have A*--A,. It is not difficult to show that B’
satisfies (B). Q.E.D.

:. The Navier.Stokes initial value problem. By Theorem 3 and
Proposition 1 we have the same estimate for the nonlinear term of
(AN) as Lemma 2.2 in [7] (A should be replaced by A). This estimate
together with Theorem 2 shows that there is a unique strong solution
of (AN); see [7]. More precisely, we have

Theorem 4. Fix such that n/2p-1/2_1. Assume that a
is in D(A2). Then there exists a unique local solution u of (AN) with
the following properties.

( i ) u is continuous from [0, T) to D(A),
(ii) u is continuous from (0, T) to D(A) and Au(t)l]= o(t-") as

t-O for some , 1, for some TO.
Moreover, u is smooth in D(0, T).
To prove this we put u(t)= ev(t) in (AN). Then v(t) is a solution

of
dv/dt+A,v+etp(v,g)v=O, v(0)=a.

Applying Theorem 2 and the estimates o nonlinear term to this equa-
tion, we get Theorem 4 in the same way as in [7].

Before concluding this paper, we consider, or example, the case
that Bu=O, u.,=0 is the slip boundary condition. By Solonnikov-
SSadilow [12] we can take L=0 in Theorems 2 and 3. This implies
that the solution in Theorem 4 exists globally i the initial velocity a
is sufficiently small in D(A2) see Theorem 2.6 in [7].
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