26. Remarks on the Uniqueness in an Inverse Problem for the Heat Equation. I

By Takashi Suzuki
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, m. J. A., March 12, 1982)
§ 1. Introduction. For $(p, h, H, a) \in C^{1}[0,1] \times \mathcal{R} \times \mathcal{R} \times L^{2}(0,1)$, let ($E_{p, h, H, a}$) denote the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\left(p(x)-\frac{\partial^{2}}{\partial x^{2}}\right) u=0 \quad(0<t<\infty, 0<x<1) \tag{1.1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial x}-h u_{\mid x=0}=0, \quad \frac{\partial u}{\partial x}+H u_{\mid x=1}=0 \quad(0<t<\infty) \tag{1.2}
\end{equation*}
$$

and with the initial condition

$$
\begin{equation*}
u_{\mid t=0}=a(x) \quad(0<x<1) \tag{1.3}
\end{equation*}
$$

Let $A_{p, n, H}$ be the realization in $L^{2}(0,1)$ of the differential operator $p(x)$ $-\left(\partial^{2} / \partial x^{2}\right)$ with the boundary condition (1.2), and let $\left\{\lambda_{n} \mid n=0,1, \cdots\right\}$ and $\left\{\phi\left(\cdot, \lambda_{n}\right) \mid n=0,1, \cdots\right\}$ be the eigenvalues and the eigenfunctions of $A_{p, n, H}$, respectively, the latter being normalized by $\phi\left(0, \lambda_{n}\right)=1(n=0$, $1, \cdots)$. Noting that each $\lambda_{n}(n=0,1, \cdots)$ is simple, we call

$$
N=\#\left\{\lambda_{n} \mid\left(a, \phi\left(\cdot, \lambda_{n}\right)\right)=0\right\}
$$

the "degenerate number" of $a \in L^{2}(0,1)$ with respect to $A_{p, h, H}$, where (,) means the L^{2}-inner product.

Let T_{1}, T_{2} in $0 \leqq T_{1}<T_{2}<\infty$ be given. For the solution $u=u(t, x)$ of the equation ($E_{p, h, H, a}$), the following theorem was proved by Murayama [1] and Suzuki [4], differently :

Theorem 0. The equality

$$
v(t, \xi)=u(t, \xi) \quad\left(T_{1} \leqq t \leqq T_{2} ; \xi=0,1\right)
$$

implies

$$
\begin{equation*}
(q, j, J, b)=(p, h, H, a) \tag{1.5}
\end{equation*}
$$

if and only if $N=0$, where $v=v(t, x)$ is the solution of $\left(E_{q, j, J, b}\right)$
$\left((q, j, J, b) \in C^{1}[0,1] \times \mathscr{R} \times \mathcal{R} \times L^{2}(0,1)\right)$.
In the present paper, for $x_{0} \in(0,1]$, we consider

$$
\begin{equation*}
v_{x}\left(t, x_{0}\right)=u_{x}\left(t, x_{0}\right), \quad v(t, \xi)=u(t, \xi) \quad\left(T_{1} \leqq t \leqq T_{2} ; \xi=0, x_{0}\right) \tag{1.4}
\end{equation*}
$$

instead of (1.4'), and study
Problem. Under what condition on (p, h, H, a), does (1.4) imply (1.5)?

Namely, we show when

$$
\begin{equation*}
\hat{\mathcal{M}}=\{(p, h, H, a)\} \tag{1.6}
\end{equation*}
$$

is satisfied, where $\hat{\mathscr{M}}=\left\{(q, j, J, b)\left|C^{1}[0,1] \times \mathscr{R} \times \mathscr{R} \times L^{2}(0,1)\right|(1.4)\right.$ holds
for the solution $v=v(t, x)$ of the equation $\left.\left(E_{q, j, J, b}\right)\right\}$. In this problem, the position of x_{0} plays an important role:

Theorem 1. In the case of $x_{0}=1,(1.6)$ holds if and only if $N=0$.
Theorem 2. In the case of $1 / 2<x_{0}<1$, (1.6) holds if $N<\infty$.
Theorem 3. In the case of $x_{0}=1 / 2$, (1.6) holds if and only if $N \leqq 1$.

Theorem 4. In the case of $0<x_{0}<1 / 2$, we always have $\hat{\mathscr{M}}$ $\supsetneq\{(p, h, H, a)\}$.

If $x_{0}=1$, (1.4) is equivalent to (1.4') and $J=H$, unless $a \equiv 0$. Hence Theorem 1 follows from Suzuki [4, Theorem 1]. In the present paper we prove Theorems 2-4. The proof suggests the following facts, though details are omitted: (I) $q(x)=p(x)\left(0 \leqq x \leqq x_{0}\right)$ and $j=h$ follow from $N<\infty$ and (1.4), whenever $0<x_{0}<1$. (II) If $x_{0} \neq 1$, in any case (1.5) doesn't hold without $v_{x}\left(t, x_{0}\right)=u_{x}\left(t, x_{0}\right)$ in (1.4).
§2. Preliminaries. Let $\Omega \subset \mathcal{R}^{2}$ be the interior of a triangle $\triangle \mathrm{OAB}$ with $\overline{\mathrm{OA}}=\overline{\mathrm{OB}}, \angle \mathrm{AOB}=\pi / 2, \mathrm{AB}$ being parallel to either the x-axis or the y-axis and let $r \in C^{1}(\bar{\Omega})$ be given. We get the following propositions on the hyperbolic equation

$$
\begin{equation*}
K_{x x}-K_{y y}=r K \quad(\text { on } \bar{D}) \tag{2.1}
\end{equation*}
$$

in the same way as in Picard [2], where ν means the outer unit normal vector on $\partial \Omega$:

Proposition 1. For given $f \in C^{2}(\overline{\mathrm{OA}})$ and $g \in C^{2}(\overline{\mathrm{OB}})$ with $f_{10}=g_{10}$, there exists a unique $K \in C^{2}(\bar{\Omega})$ such that (2.1) and

$$
\begin{equation*}
K_{\mid O A}=f, \quad K_{\text {OOB }}=g . \tag{2.2}
\end{equation*}
$$

Proposition 2. For given $f \in C^{2}(\overline{\mathrm{AB}})$ and $g \in C^{1}(\overline{\mathrm{AB}})$, there exists a unique $K \in C^{2}(\bar{\Omega})$ such that (2.1) and

$$
\begin{equation*}
K_{\mid \mathrm{AB}}=f, \quad \frac{\partial}{\partial \nu} K_{\mid \mathrm{AB}}=g . \tag{2.2'}
\end{equation*}
$$

Proposition 3. For given $f \in C^{2}(\overline{\mathrm{OA}}), g \in C^{1}(\overline{\mathrm{AB}})$ and $h \in \mathcal{R}$, there exists a unique $K \in C^{2}(\bar{\Omega})$ such that (2.1) and

$$
K_{\mid O A}=f, \quad \frac{\partial}{\partial \nu} K+h K_{\mid \mathrm{AB}}=g .
$$

These equations are reduced to certain integral equations of Volterra type, and are solved by the iteration.

Let $\phi=\phi(x)=\phi(x, \lambda)(\lambda \in \mathbb{R})$ be the solution of

$$
\begin{equation*}
\left(\frac{d^{2}}{d x^{2}}+\lambda\right) \phi=p(x) \phi, \quad \phi(0, \lambda)=1, \quad \phi^{\prime}(0, \lambda)=h . \tag{2.3}
\end{equation*}
$$

This notation is compatible to that of $\phi\left(\cdot, \lambda_{n}\right)$ in $\S 1$. Put D $=\{(x, y) \mid 0<y<x<1\}$. The following Lemma 1 is shown by Propositions 1 and 3, while Lemma 2 is obtained in the same way as in Suzuki-Murayama [3]. See Suzuki [4], [5], for details.

Lemma 1. For given $p, q \in C^{1}[0,1]$ and $h, j \in \mathcal{R}$, there exists a
unique $K \in C^{2}(\bar{D})$ such that

$$
\begin{gather*}
K_{x x}-K_{y y}+p(y) K=q(x) K \quad(\text { on } \bar{D}) \tag{2.4.a}\\
K(x, x)=(j-h)+\frac{1}{2} \int_{0}^{x}(q(s)-p(s)) d s \quad(0 \leqq x \leqq 1) \tag{2.4.b}\\
K_{y}(x, 0)=h K(x, 0) \quad(0 \leqq x \leqq 1) . \tag{2.4.c}
\end{gather*}
$$

Lemma 2. For K in Lemma 1,

$$
\begin{equation*}
\psi(x, \lambda)=\phi(x, \lambda)+\int_{0}^{x} K(x, y) \phi(y, \lambda) d y \tag{2.5}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\left(\frac{d^{2}}{d x^{2}}+\lambda\right) \psi=q(x) \psi, \quad \psi(0, \lambda)=1, \quad \psi^{\prime}(0, \lambda)=j . \tag{2.6}
\end{equation*}
$$

Let $\left\{n_{l}\right\}_{l=1}^{N}\left(n_{1}<n_{2}<\cdots<n_{N}\right)$ be a finite set of non-negative integers. We then have

Lemma 3. $\left\{\phi\left(\cdot, \lambda_{n}\right) \mid n \neq n_{l}, 1 \leqq l \leqq N\right\}$ is complete in $L^{2}(a, b)$, where $(a, b) \subsetneq(0,1)$.
§3. Outline of the proof of Theorems 2-4. Assume (1.4) and $0<x_{0}<1$. Suppose, for the moment, $N<\infty$ and
(3.1) $\quad\left(a, \phi\left(\cdot, \lambda_{n}\right)\right)=0 \quad(0 \leqq l \leqq N), \quad\left(a, \phi\left(\cdot, \lambda_{n}\right)\right) \neq 0 \quad\left(n \neq n_{l}\right)$.

Put $\quad \rho_{n}=\left\|\phi\left(\cdot, \lambda_{n}\right)\right\|_{L^{2}(0,1)}^{2}, \quad \sigma_{m}=\left\|\psi\left(\cdot, \mu_{m}\right)\right\|_{L^{2}(0,1)}^{2} \quad$ and $\quad \mathcal{M}=\{(q, j, J) \mid$ there exists some b such that $(q, j, J, b) \in \hat{\mathcal{M}}\}$. Then, the following lemma is obtained in the same way as in Suzuki [4] in virtue of Lemma 2. However, in deriving (3.2), Lemma 3 is made use of.

Lemma 4. Under the assumption of (3.1) and $0<x_{0}<1,(q, j, J)$ $\in \mathscr{M}$ if and only if there exists some $K \in C^{2}(\bar{D})$ such that (2.4) and

$$
\begin{gather*}
K\left(x_{0}, y\right)=K_{x}\left(x_{0}, y\right)=0 \quad\left(0 \leqq y \leqq x_{0}\right) \tag{3.2}\\
\int_{0}^{1}\left\{K_{x}(1, y)+J K(1, y)\right\} \phi\left(y, \lambda_{n}\right) d y=0 \quad\left(n \neq n_{l} ; 1 \leqq l \leqq N\right) \tag{3.3}
\end{gather*}
$$

$$
\begin{equation*}
J=H-K(1,1) \tag{3.4}
\end{equation*}
$$

Furthermore, the following facts hold: (I) For each $(q, j, J) \in \mathscr{M}$, only a unique b satisfies $(q, j, J, b) \in \hat{\mathcal{M}}$. (II) Even if $N=\infty$, the if part of Lemma 4 holds under the assumption of the first part of (3.1). (III) $(q, j, J)=(p, h, H)$ if and only if $K \equiv 0$ on \bar{D}. Therefore, Theorems 2-4 are proved by the following (A) and (B) : (A) (2.4) and (3.2)-(3.4) imply $K \equiv 0$ if $1 / 2<x_{0}<1$ and $N<\infty$ or if $x_{0}=1 / 2$ and $N \leqq 1$. (B) There exist q, j, J and $K \not \equiv 0$ such that (2.4) and (3.2)-(3.4) if $0<x_{0}<1 / 2$ or if $x_{0}=1 / 2$ and $2 \leqq N \leqq \infty$. Since the latter case is treated in a similar way to the former one in both (A) and (B), we only show (A) for the case of $1 / 2$ $<x_{0}<1$ and $N<\infty$, and (B) for the case of $0<x_{0}<1 / 2$.

Set $D_{x_{0}}=D \cap\left\{(x, y) \mid x+y<2 x_{0}\right\}$. By virtue of the uniqueness assertion of Propositions 1-3, (3.2) is equivalent to

$$
\begin{equation*}
K=0 \quad\left(\text { on } \overline{D_{x_{0}}}\right) \tag{3.5}
\end{equation*}
$$

under (2.4.a) and (2.4.c).
Proof of (A) for the case of $1 / 2<x_{0}<1$. By (3.5), we have $K(1, y)$
$=K_{x}(1, y)=0\left(0 \leqq y \leqq 2 x_{0}-1\right)$. Therefore, (3.7) gives

$$
\int_{2 x_{0}-1}^{1}\left\{K_{x}(1, y)+J K(1, y)\right\} \phi\left(y, \lambda_{n}\right) d y=0 \quad\left(n \neq n_{l}, 1 \leqq l \leqq N\right)
$$

hence

$$
\begin{equation*}
K_{x}(1, y)+J K(1, y)=0 \quad\left(2 x_{0}-1 \leqq y \leqq 1\right) \tag{3.6}
\end{equation*}
$$

by Lemma 3. $K=0$ on $D \backslash D_{x_{0}}$ is derived from Proposition 3, by virtue of (2.4.a), (3.6) and (3.5).

Proof of (B) for the case of $0<x_{0}<1 / 2$. In this case (3.5) is equivalent to (3.7)

$$
K(x, 0)=0 \quad\left(0 \leqq x \leqq 2 x_{0}\right)
$$

under (2.4.a) and (2.4.c), because of Proposition 2. Take an arbitrary $g \in C^{2}[0,1]$ whose support is in $\left(2 x_{0}, 1\right)$. In the same way as in Picard [2], we can show the unique existence of $K \in C^{2}(\bar{D})$ such that (2.4.a), (2.4.c), (3.6) and
(3.7')

$$
K(x, 0)=g(x) \quad(0 \leqq x \leqq 1)
$$

For the mapping

$$
\begin{aligned}
T=T_{g}: & C^{1}[0,1] \times \mathscr{R} \longrightarrow C^{1}[0,1] \times \mathscr{R} \\
& (q, J) \mid \rightarrow(2 d / d x K(x, x)+p(x), H-K(1,1)),
\end{aligned}
$$

the following lemma is obtained by estimating each successive approximation of K :

Lemma 5. There exist $B>0$ and $\delta>0$ such that T_{g} is a strict contraction mapping on $U_{B} \equiv\left\{(q, J)\left|\|q\|_{G 1[0,1]}+|J| \leqq B\right\}\right.$ for each g $\in C_{0}^{2}\left(2 x_{0}, 1\right)$ in $\|g\|_{c 2\left[2 x_{0}, 1\right]} \leqq \delta$.
For $g \not \equiv 0$ with $\|g\|_{C 2\left[2 x_{0}, 1\right]} \leqq \delta$, there exists a fixed point of T_{g}, which is denoted by (q, J). Set $j=h+K(0,0), K \in C^{2}(\bar{D})$ being the solution of (2.4.a), (2.4.c), (3.6) and (3.7'). Then, q, j, J and K satisfy (2.4), (3.2)-(3.4), while $K \not \equiv 0$ follows from $g \not \equiv 0$.

References

[1] Murayama, R.: The Gel'fand-Levitan theory and certain inverse problems for the parabolic equation. J. Fac. Sci. Univ. Tokyo, Sec. IA., 28, 317-330 (1981).
[2] Picard, E.: Leçons sur quelques types simples d'équations aux derivées partielles. Paris-Imprimerie Gauthier-Villars (1951).
[3] Suzuki, T., and Murayama, R.: A uniqueness theorem in an identification problem for coefficients of parabolic equations. Proc. Japan Acad., 56A, 259-263 (1980).
[4] Suzuki, T.: Uniqueness and nonuniqueness in an inverse problem for the parabolic equation (to appear in J. Diff. Eq.).
[5] -: Inverse problems for the heat equation. Sûgaku, 34, 55-64 (1982) (in Japanese).

