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On the Stickelberger Ideal and
the Relative Class Number

By Tatsuo KIMURA*) and Kuniaki HORIE**)

(Communicated by Shokichi IYANA(A, M. J. A., April 12, 1982)

A finite abelian extension of Q contained in C will be called an
abelian field. Let k be an imaginary abelian field, namely an abelian
field not contained in R. We denote by R Z[G] the group ring of the
Galois group G=Gal (k/Q) over z. Put

A={eR;(l+J)=a.,a for some aeZ}
where J denotes the complex conjugation of k. Let Q be the unit
index of k, g the number of distinct rational primes ramifying in k,
and c the rational number which describes the difference between the
relative class number h; of k and the group index [A" S] where S de-
notes the Stickelberger ideal of k (for the definition of a Stickelberger
ideal, see [4])"

ch; [A S].
It is known that d-Qc is a natural number. In the case g-1 or 2,
W. Sinnott has determined the number d ([4]). In this article, we
give some results concerning the range of c.

Theorem. In general, 2c is a natural number, and the following
assertions hold.

1) If g=l, then we have c=l.
2) If g=2, then we have c=1/2 or 1, and there exist infinitely

many imaginary abelian fields k for each case.
3) If g=3, then we have c--2 for some integer a-l. On

the other hand, for any given integer a>=--l, there exist infinitely
many imaginary abelian fields k with g=3 and c=2.

4) For any given pair (re, n) of natural numbers with m>=4,
there exist infinitely many imaginary abelian fields k satisfying g--m
and c n/2.

Remark. The assertion 1) ls obtained immediately rom Propo-
sition 5.2 in [4] and Satz 23 in [1].

Using Theorem and W. Sinnott’s result (Theorem in [3]), we
obtain the following

Proposition. For any given pair (m,n) of natural numbers
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satisfying m>=4, there exist infinitely many cyclotomic fields k with
g--m and

Remark. The assertion of Proposition also holds with the addi-
tional condition that k is tamely ramified over Q.

The details will appear elsewhere.
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