46. Construction of Integral Basis. IV

By Kōsaku Okutsu
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Ifanaga, m. J. A., April 12, 1982)

Let \mathfrak{o} be a principal ideal domain, and k its quotient field. Let $f(x)$ be a monic irreducible separable polynomial of degree n in $0[x]$, and θ one of the roots of $f(x)$ in an algebraic closure \bar{k} of k. In our preceding notes, we have given a formula for the integral basis of K $=k(\theta)$, i.e. an o-basis of integral closure \mathfrak{o}_{K} of 0 in K, for the case where \mathfrak{o} is a complete discrete valuation ring. Now, using these results, we shall give a similar formula for the general (global) case.
$\S 1$. Let $\left\{\mathfrak{p}_{\lambda}\right\}_{\lambda_{\in A}}$ be the set of all maximal ideals of $\mathfrak{o}, \pi_{\lambda} \in \mathfrak{o}$ a generator of $\mathfrak{p}_{\lambda}, k_{\lambda}$ a completion of k with respect to \mathfrak{p}_{λ}, and \mathfrak{o}_{2} its ring of integers. (Fixing an embedding of k in k_{λ}, we assume that k is a subfield of k_{λ}.) Let \bar{k}_{λ} be the algebraic closure of k_{λ}. We denote by $\left|\left.\right|_{x}\right.$ a fixed valuation of \bar{k}_{λ} which is an extension of the valuation corresponding to \mathfrak{p}_{λ}. Let $f(x)=\prod_{i=1}^{s} f_{\lambda, i}(x)$ be a factorization of $f(x)$ in $k_{\lambda}[x]$, where $f_{\lambda, i}(x)$ is a monic irreducible polynomial in $\mathfrak{o}_{\lambda}[x]$ of degree $n_{\lambda, i}$. Let $\theta_{\lambda, i}$ be one of the roots of $f_{\lambda, i}(x)$ in \bar{k}_{λ}. We define a k-isomorphism $\iota_{\lambda, i}$ from $K=k(\theta)$ into \bar{k}_{λ} by putting $\iota_{\lambda, i}(\theta)=\theta_{\lambda, i}$. For each $\lambda \in \Lambda$ we define a real valued function $\left\|\|_{\lambda}\right.$ on K as follows. $\| \alpha \|_{\lambda}=\sup _{i=1, \ldots, s}\left|\iota_{\lambda, i}(\alpha)\right|_{\lambda}$ $(\alpha \in K)$. For a polynomial $h(x)=a_{0} x^{m}+\cdots+a_{m}$ in $\mathfrak{o}[x]$, we put $|h(x)|_{2}$ $=\sup _{j=0, \ldots, m}\left|a_{j}\right|_{\lambda}$.

We have following Proposition 1, and Definition in generalization of what we have seen in Part I.

Proposition 1. For each $\lambda \in \Lambda$ and any positive integer $m<n$, there exists a monic polynomial $g_{\lambda, m}(x)$ of degree m in $o[x]$ with the following property:

For any polynomial $G(x)$ of degree m in $\mathfrak{o}[x]$, we have

$$
\left\|g_{\lambda, m}(\theta)\right\|_{\lambda} \leq\left\|G(\theta)_{\lambda}\right\| / /\left.G(x)\right|_{\lambda}
$$

Definition. We will call a monic polynomial $g_{\lambda, m}(x)$ with the property in the above proposition a devisor polynomial of degree m of $f(x)$ for \mathfrak{p}_{λ}. We put $\mu_{\lambda, m}=\min _{i=1, \ldots, s} \operatorname{ord}_{\left.\pi 0_{0}\right\rangle}\left(g_{\lambda, m}\left(\theta_{\lambda, i}\right)\right)$, and $\nu_{\lambda, m}=\left[\mu_{\lambda, m}\right]$. $\nu_{\lambda, m}$ will be called the integrality index of degree m of θ for \mathfrak{p}_{λ}.

Proposition 2. Let $g_{\lambda, m}(x), \nu_{\lambda, m}$ be a divisor polynomial, and the integrality index of degree m of θ for \mathfrak{p}_{λ}. We put

$$
R_{\lambda}=\sum_{m=0}^{n-1} \mathfrak{o} \frac{g_{\lambda, m}(\theta)}{\pi_{\lambda}^{2 \nu_{\lambda}, m}} .
$$

Then R_{λ} coincides with the subring $\left\{x \in \mathfrak{o}_{K} \mid \pi_{\lambda}^{l} \cdot x \in \mathfrak{o}[\theta]\right.$ for some positive
integer l\} of \mathfrak{o}_{K}, and any maximal ideal of R_{λ} containing \mathfrak{p}_{λ} is invertible in R_{λ}.

Proposition 3. If any prime divisor of $\mathfrak{p}_{\mathfrak{k}}[\theta]$ is invertible in $\mathfrak{0}[\theta]$, we have $\nu_{\lambda, m}=0$ for $m=0, \cdots, n-1$.

Let Λ_{0} be the subset of Λ such that $\lambda \in \Lambda_{0}$ means the following: There exists some maximal ideal \mathfrak{P} of $\mathrm{o}[\theta]$ containing π_{λ} which is not invertible in $\mathfrak{o}[\theta]$. If $\mathfrak{p}_{\boldsymbol{N}} \mathfrak{D}[\theta]$ is prime to the conductor ($\mathfrak{D}[\theta]: \mathfrak{o}_{K}$) of $\mathfrak{o}[\theta]$, every prime divisor of $\mathfrak{p}_{\lambda} 0[\theta]$ is invertible in $\mathfrak{0}[\theta]$. As the discriminant $D(f)$ of $f(x)$ is contained in $\left(0[\theta]: \mathfrak{o}_{K}\right)$, we have $\mathfrak{p}_{\lambda} \ni D(f)$ for any $\lambda \in \Lambda_{0}$. Thus Λ_{0} is a finite set.

Theorem 1. Let $g_{m}(x)$ be a monic polynomial of degree m in $\mathrm{o}[x]$ satisfying $g_{m}(x) \equiv g_{\lambda, m}(x)\left(\bmod \pi_{\lambda}^{\nu \lambda, m+1}\right)$ for any $\lambda \in \Lambda$, where $g_{\lambda, m}(x)$ is a divisor polynomial, and $\nu_{\lambda, m}$ is the integrality index of degree m for \mathfrak{p}_{λ} of θ. Then we have

$$
\mathfrak{o}_{K}=\sum_{m=0}^{n-1} \mathfrak{o} \frac{g_{m}(\theta)}{\prod_{\lambda \in \Lambda_{0}} \pi_{\lambda}^{\nu \lambda, m}} .
$$

Remark. The product Π_{λ} in the above theorem may be taken over the prime ideals \mathfrak{p}_{λ} containing the discriminant of $f(x)$.
§ 2. Now we show how divisor polynomials $g_{\lambda, m}(x)$ for \mathfrak{p}_{λ} can be constructed from primitive divisor polynomials of the irreducible factors of $f(x)$ in $k_{\lambda}[x]$. Let $f(x)=\prod_{i=1}^{s} f_{\lambda, i}(x)$ be an irreducible factorization of $f(x)$ in $\mathfrak{o}_{\lambda}[x]$. We fix now λ, and write $f_{i}(x)$ for $f_{\lambda, i}(x)$. Let θ_{i} be a root of $f_{i}(x)$ in \bar{k}_{i}, and n_{i} the degree of $f_{i}(x)(i=1, \cdots, s)$. Let $f_{i, j}(x)$ be a j-th primitive divisor polynomial of $f_{i}(x)\left(1 \leq j \leq r_{i}\right.$, where r_{i} is the depth of $f_{i}(x)$), and $f_{i, 0}(x)=f_{i}(x)$. We put $S_{i, j}=\{k \in\{1,2, \cdots$, $s\}\left|\left|f_{i, j}\left(\theta_{k}\right)\right|_{\lambda} \geq\left|f_{i, j}\left(\theta_{i}\right)\right|_{\lambda}\right\}$. It is easy to see that $S_{i, j} \ni S_{i^{\prime}, j^{\prime}}$ implies $m_{j}\left(\theta_{i}, k_{2}\right)$ $<m_{j^{\prime}}\left(\theta_{i^{\prime}}, k_{i}\right)$ (where $m_{j}\left(\theta_{i}, k_{i}\right)$ is the degree of $f_{i, j}(x)$ as in Part II). Furthermore $S_{i, j} \cap S_{i^{\prime}, j^{\prime}} \neq \emptyset$ implies $S_{i, j} \subset S_{i^{\prime} j^{\prime}}$ or $S_{i^{\prime}, j^{\prime}} \subset S_{i, j}$. Thus when $m_{j}\left(\theta_{i}, k_{i}\right)=m_{j^{\prime}}\left(\theta_{i^{\prime}}, k_{i}\right)$ and $S_{i, j} \cap S_{i^{\prime}, j^{\prime}} \neq \emptyset$, we have $S_{i, j}=S_{i^{\prime}, j^{\prime}}$. Now introduce an equivalence relation \sim in the set $\left\{(i, j) \mid 1 \leq i \leq s, 0 \leq j \leq r_{i}\right\}$ in defining $(i, j) \sim\left(i^{\prime}, j^{\prime}\right) \Leftrightarrow S_{i, j}=S_{i^{\prime}, j^{\prime}}$ and $m_{j}\left(\theta_{i}, k_{\lambda}\right)=m_{j^{\prime}}\left(\theta_{i^{\prime}}, k_{\lambda}\right)$. We denote by \mathbb{S} a complete set of representatives of the equivalence classes given by this \sim. Then we have

Theorem 2. For any integer $m(0 \leq m<n)$, there exist some integers $q_{i, j} \geq 0((i, j) \in \mathbb{S})$ satisfying

$$
\sum_{(i, j) \in \mathscr{E}} q_{i, j} m_{j}\left(\theta_{i}, k_{\lambda}\right)=m, \quad \text { and } \sup _{k=1, \ldots, s}\left|\prod_{(i, j) \in \mathscr{S}} f_{i, j}\left(\theta_{k}\right)^{q_{i, j}}\right|_{\lambda}=\left\|g_{\lambda, m}(\theta)\right\|_{\lambda}
$$

where $g_{\lambda, m}(x)$ is a divisor polynomial of degree m of θ for \mathfrak{p}_{λ}.
A divisor polynomial $g_{\lambda, m}(x)$ is therefore obtained from $f_{\lambda, i}(x)$ as follows. Let $q_{i, j} \in\{0,1, \cdots, m\}((i, j) \in \mathbb{S})$ be a solution of $\sum_{(i, j) \in \mathfrak{S}} q_{i, j} m_{j}\left(\theta_{i}, k_{i}\right)=m$. For this solution W, consider the value

$$
\sup _{k=1, \ldots, s} \mid \prod_{(i, j) \in \mathbb{S}} f_{i, j}\left(\theta_{k}\right)^{\left.q_{i, j}\right|_{k}}
$$

which we denote with v_{W}. As there are only a finite number of such solutions W, there is a minimum value $v_{W_{0}}$ of these values, and the corresponding solution $W_{0}=\left\{q_{i, j}^{0}((i, j) \in \mathbb{S})\right\}$. Let $g(x)$ be a monic polynomial of degree m in $\mathfrak{o}[x]$ satisfying

$$
\left|g(x)-\prod_{(i, j) \in \mathscr{S}} f_{i, j}(x)^{q_{i, j}^{o}}\right|_{\lambda} \leq \sup _{k=1, \ldots, s}\left|\prod_{(i, j) \in \mathscr{S}} f_{i, j}\left(\theta_{k}\right)\right|_{\lambda}
$$

Then $g(x)$ is the divisor polynomial of degree m for \mathfrak{p}_{λ} of θ.

Reference

[1] K. Okutsu: Construction of Integral Basis. I; II; III. Proc. Japan Acad., 58A, 47-49; 87-89; 117-119 (1982).

