46. Construction of Integral Basis. IV

By Kōsaku OKUTSU

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1982)

Let \mathfrak{o} be a principal ideal domain, and k its quotient field. Let f(x) be a monic irreducible separable polynomial of degree n in $\mathfrak{o}[x]$, and θ one of the roots of f(x) in an algebraic closure \bar{k} of k. In our preceding notes, we have given a formula for the integral basis of $K = k(\theta)$, i.e. an \mathfrak{o} -basis of integral closure \mathfrak{o}_K of \mathfrak{o} in K, for the case where \mathfrak{o} is a complete discrete valuation ring. Now, using these results, we shall give a similar formula for the general (global) case.

§ 1. Let $\{\mathfrak{p}_{\lambda}\}_{\lambda \in A}$ be the set of all maximal ideals of $\mathfrak{o}, \pi_{\lambda} \in \mathfrak{o}$ a generator of $\mathfrak{p}_{\lambda}, k_{\lambda}$ a completion of k with respect to \mathfrak{p}_{λ} , and \mathfrak{o}_{λ} its ring of integers. (Fixing an embedding of k in k_{λ} , we assume that k is a subfield of k_{λ} .) Let \bar{k}_{λ} be the algebraic closure of k_{λ} . We denote by $| \cdot |_{\lambda}$ a fixed valuation of \bar{k}_{λ} which is an extension of the valuation corresponding to \mathfrak{p}_{λ} . Let $f(x) = \prod_{i=1}^{s} f_{\lambda,i}(x)$ be a factorization of f(x) in $k_{\lambda}[x]$, where $f_{\lambda,i}(x)$ is a monic irreducible polynomial in $\mathfrak{o}_{\lambda}[x]$ of degree $n_{\lambda,i}$. Let $\theta_{\lambda,i}$ be one of the roots of $f_{\lambda,i}(x)$ in \bar{k}_{λ} . We define a k-isomorphism $\iota_{\lambda,i}$ from $K = k(\theta)$ into \bar{k}_{λ} by putting $\iota_{\lambda,i}(\theta) = \theta_{\lambda,i}$. For each $\lambda \in \Lambda$ we define a real valued function $|| \mid_{\lambda}$ on K as follows. $|| \alpha ||_{\lambda} = \sup_{i=1,\dots,s} |\iota_{\lambda,i}(\alpha)|_{\lambda}$ $(\alpha \in K)$. For a polynomial $h(x) = a_0 x^m + \dots + a_m$ in $\mathfrak{o}[x]$, we put $|h(x)|_{\lambda} = \sup_{i=0,\dots,m} |a_i|_{\lambda}$.

We have following Proposition 1, and Definition in generalization of what we have seen in Part I.

Proposition 1. For each $\lambda \in \Lambda$ and any positive integer m < n, there exists a monic polynomial $g_{\lambda,m}(x)$ of degree m in $\mathfrak{o}[x]$ with the following property:

For any polynomial G(x) of degree m in $\mathfrak{o}[x]$, we have $\|g_{\lambda,m}(\theta)\|_{\lambda} \leq \|G(\theta)_{\lambda}\|/|G(x)|_{\lambda}.$

Definition. We will call a monic polynomial $g_{\lambda,m}(x)$ with the property in the above proposition a *devisor polynomial* of degree *m* of f(x) for \mathfrak{p}_{λ} . We put $\mu_{\lambda,m} = \min_{i=1,\dots,s} \operatorname{ord}_{\pi\lambda\circ\lambda}(g_{\lambda,m}(\theta_{\lambda,i}))$, and $\nu_{\lambda,m} = [\mu_{\lambda,m}]$. $\nu_{\lambda,m}$ will be called the *integrality index* of degree *m* of θ for \mathfrak{p}_{λ} .

Proposition 2. Let $g_{\lambda,m}(x)$, $\nu_{\lambda,m}$ be a divisor polynomial, and the integrality index of degree m of θ for \mathfrak{p}_{λ} . We put

$$R_{\lambda} = \sum_{m=0}^{n-1} \mathfrak{o} \frac{g_{\lambda,m}(\theta)}{\pi_{\lambda}^{\nu\lambda,m}}.$$

Then R_i coincides with the subring $\{x \in \mathfrak{o}_K | \pi_i^i \cdot x \in \mathfrak{o}[\theta] \text{ for some positive }$

integer l} of o_{κ} , and any maximal ideal of R_{λ} containing \mathfrak{p}_{λ} is invertible in R_{λ} .

Proposition 3. If any prime divisor of $\mathfrak{p}_{\lambda}\mathfrak{o}[\theta]$ is invertible in $\mathfrak{o}[\theta]$, we have $\nu_{\lambda,m}=0$ for $m=0, \dots, n-1$.

Let Λ_0 be the subset of Λ such that $\lambda \in \Lambda_0$ means the following: There exists some maximal ideal \mathfrak{P} of $\mathfrak{o}[\theta]$ containing π_{λ} which is not invertible in $\mathfrak{o}[\theta]$. If $\mathfrak{p}_{\lambda}\mathfrak{o}[\theta]$ is prime to the conductor $(\mathfrak{o}[\theta]:\mathfrak{o}_{\kappa})$ of $\mathfrak{o}[\theta]$, every prime divisor of $\mathfrak{p}_{\lambda}\mathfrak{o}[\theta]$ is invertible in $\mathfrak{o}[\theta]$. As the discriminant D(f) of f(x) is contained in $(\mathfrak{o}[\theta]:\mathfrak{o}_{\kappa})$, we have $\mathfrak{p}_{\lambda} \ni D(f)$ for any $\lambda \in \Lambda_0$. Thus Λ_0 is a finite set.

Theorem 1. Let $g_m(x)$ be a monic polynomial of degree m in $\mathfrak{o}[x]$ satisfying $g_m(x) \equiv g_{\lambda,m}(x) \pmod{\pi_{\lambda}^{\nu_{\lambda,m}+1}}$ for any $\lambda \in \Lambda$, where $g_{\lambda,m}(x)$ is a divisor polynomial, and $\nu_{\lambda,m}$ is the integrality index of degree m for \mathfrak{p}_{λ} of θ . Then we have

$$\mathfrak{o}_{K} = \sum_{m=0}^{n-1} \mathfrak{o} \frac{g_{m}(\theta)}{\prod_{\lambda \in A_{0}} \pi_{\lambda}^{\nu\lambda,m}}.$$

Remark. The product \prod_{λ} in the above theorem may be taken over the prime ideals \mathfrak{p}_{λ} containing the discriminant of f(x).

§ 2. Now we show how divisor polynomials $g_{\lambda,m}(x)$ for \mathfrak{p}_{λ} can be constructed from primitive divisor polynomials of the irreducible factors of f(x) in $k_{\lambda}[x]$. Let $f(x) = \prod_{i=1}^{s} f_{\lambda,i}(x)$ be an irreducible factorization of f(x) in $\mathfrak{o}_{\lambda}[x]$. We fix now λ , and write $f_{i}(x)$ for $f_{\lambda,i}(x)$. Let θ_{i} be a root of $f_{i}(x)$ in \bar{k}_{λ} , and n_{i} the degree of $f_{i}(x)$ ($i=1, \cdots, s$). Let $f_{i,j}(x)$ be a *j*-th primitive divisor polynomial of $f_{i}(x)$ ($1 \le j \le r_{i}$, where r_{i} is the depth of $f_{i}(x)$), and $f_{i,0}(x) = f_{i}(x)$. We put $S_{i,j} = \{k \in \{1, 2, \cdots, s\} || f_{i,j}(\theta_{k})|_{\lambda} \ge |f_{i,j}(\theta_{i})|_{\lambda}\}$. It is easy to see that $S_{i,j} \supseteq S_{i',j'}$ implies $m_{j}(\theta_{i}, k_{\lambda})$ $< m_{j'}(\theta_{i'}, k_{\lambda})$ (where $m_{j}(\theta_{i}, k_{\lambda})$ is the degree of $f_{i,j}(x)$ as in Part II). Furthermore $S_{i,j} \cap S_{i',j'} \ne \emptyset$ implies $S_{i,j} \subseteq S_{i',j'}$ or $S_{i',j'} \subseteq S_{i,j}$. Thus when $m_{j}(\theta_{i}, k_{2}) = m_{j'}(\theta_{i'}, k_{2})$ and $S_{i,j} \cap S_{i',j'} \ne \emptyset$, we have $S_{i,j} = S_{i',j'}$. Now introduce an equivalence relation \sim in the set $\{(i, j) | 1 \le i \le s, 0 \le j \le r_{i}\}$ in defining $(i, j) \sim (i', j') \rightleftharpoons S_{i,j} = S_{i',j'}$ and $m_{j}(\theta_{i}, k_{2}) = m_{j'}(\theta_{i'}, k_{2})$. We denote by \mathfrak{S} a complete set of representatives of the equivalence classes given by this \sim . Then we have

Theorem 2. For any integer $m (0 \le m < n)$, there exist some integers $q_{i,j} \ge 0$ ((i, j) $\in \mathfrak{S}$) satisfying

 $\sum_{\substack{(i,j)\in\mathfrak{S}\\ k=1,\cdots,s}} q_{i,j}m_j(\theta_i,k_i) = m, \quad and \sup_{\substack{k=1,\cdots,s\\ k=1,\cdots,s}} |\prod_{\substack{(i,j)\in\mathfrak{S}\\ k=1}} f_{i,j}(\theta_k)^{q_{i,j}}|_i = ||g_{\lambda,m}(\theta)||_i$ where $g_{\lambda,m}(x)$ is a divisor polynomial of degree m of θ for \mathfrak{p}_i .

A divisor polynomial $g_{\lambda,m}(x)$ is therefore obtained from $f_{\lambda,i}(x)$ as follows. Let $q_{i,j} \in \{0, 1, \dots, m\}$ $((i, j) \in \mathfrak{S})$ be a solution of

 $\sum_{(i,j)\in\mathfrak{S}} q_{i,j}m_j(\theta_i,k_k) = m. \quad \text{For this solution } W, \text{ consider the value}$

$$\sup_{k=1,\cdots,s} \left| \prod_{(i,j)\in\mathfrak{S}} \mathcal{J}_{i,j}(\theta_k)^{q_{i,j}} \right|$$

which we denote with v_w . As there are only a finite number of such solutions W, there is a minimum value v_{W_0} of these values, and the corresponding solution $W_0 = \{q_{i,j}^0((i,j) \in \mathfrak{S})\}$. Let g(x) be a monic polynomial of degree m in $\mathfrak{o}[x]$ satisfying

$$|g(x)-\prod_{(i,j)\in\mathfrak{S}}f_{i,j}(x)^{q_{i,j}^0}|_{\scriptscriptstyle{\lambda}}\leq \sup_{k=1,\cdots,s}|\prod_{(i,j)\in\mathfrak{S}}f_{i,j}(\theta_k)|_{\scriptscriptstyle{\lambda}}.$$

Then g(x) is the divisor polynomial of degree m for \mathfrak{p}_{λ} of θ .

Reference

 [1] K. Okutsu: Construction of Integral Basis. I; II; III. Proc. Japan Acad., 58A, 47-49; 87-89; 117-119 (1982).