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1. Introduction. The purpose of this note is to give the expo-
nential law or symbols of micro (--pseudo) differential operators or,
more precisely, of holomorphic microlocal operators. We calculate
r(x, ) which satisfies
(1.1) :exp {p(x, )} :exp {q(x, )} := :exp {r(x, )} :.
Here the left-hand side is the composite operator of :exp (p(x, )} and
exp {q(x, )} whose symbols are exp {p(x, )} and exp {q(x, )} respec-

tively (see [2] or the notation). Such r(x, ) is expressed in a sum of
symbols ,=0 r(x, ). The first three terms were computed in our
previous note [2] under suitable growth conditions. Now all r(x, )
can be calculated from p(x, ) and q(x, ) without assuming any growth
condition.

2. Formal symbols. In [2], we used the concept "ormal sym-
bol". But we did not give the precihe definition of it there. Hence
first we have to give it here.

Definition 1. Let/2 be a conic neighborhood of * in T*X. Here
X is an open set in C. Let

(2.1) P(t x, )-- t*P(x, )
j=O

be a ormal power series in t with coefficients P(x, ) (]=0, 1,2, ...)
holomorphic in 9. The ormal series P(t;x, ) is said to be a ormal
symbol defined in 12 if or any tg’/2 there are positive constants R, A
(0AI) so that for each h0 there exists C0 such that
(2.2) [P(x, )]_CA exp (h [1)
for (x, ) e 9’, I]_ (]+ 1)R, ]= 0, 1, 2, ....

Remark. A formal symbol in the sense o [2] (cir. [1], [3])is of
course a ormal symbol in the preceding meaning.

The addition and the multiplication for ormal symbols are defined
as those o ormal power series in t. It is clear that the set of all
formal symbols defined near * forms a commutative ring E.. There
is an additive homomorphism

(2.3) E;. P(t x, ) . P(t x, ) e ..
We often abbreviate" %0 tP(x, )" to" __0 P(x, ) ". The kernel
of this homomorphism is not trivial. But we do not argue here
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about it (el. [3]).
Proposition 2. Let ,=o tp(x, ) be a formal symbol satisfying

the following estimates. For any 9’9 there are positive constants
R, A (0A1) so that for each hO there exists HO such that
(2.4) Ipj(x, )l_AJ(h
for (x,)e2’, II_(]+I)R, ]=0, 1,2, .... Then the formal power
series exp (=0 tp(x, )} is a formal symbol.. The exponential law. Let p(x, ) and q(x, ) be symbols de-
fined in 9. We assume that for each 9’9 and h0 there is a con-
stant H0 such that

(3.1) []p(x, ) gh
[[q(x,)gh[+S

for (x, ) e
Let us define a sequence {w}=0 of symbols of variables (x, y,

eXXCnCT*(XX) by

[w0(x, y, , )=p(x, )+ q(y, ),

Now set %(x, )=w(x, x, , ) for j=0, 1, 2, Then we have
the following

Theorem . The formal sum o t%(x, ) is a/ormal symbol
which satisfies the condition of Proposition 2 and the following ex-
ponential law.

(3.3) "exp (p(x, )}’" exp {q(x, )}" =" exp-- %(x, )’.
Remarks. (i) This exponential law is valid or any known class

of symbols not only of pseudodifferential operators but also of non-
local operators as far as the right-hand side makes sense (cf. [4]-[6]).

(ii) In the case of n= 1, the first four terms of r are as ollows.
ro=p+q,
r

1 l {opOqOq+OpOpOq}

1+ {(0)0q+0(0q)}+
In the ease of he orders o p and q are smaller han 1,

ceding theorem ean be rewritten. Hereafter 0 denotes a real number
such ha 0 p< 1. eN be he larges integer such ha (N+ 1)0-N
20. We assume further ha for each D’D here are h>0,
such that

(3.4) (Ip(x’ )[h [[+H’
q(x, )[gh ]]+H
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for (x, ) e ’. Then we hve the following theorem which is natural
extension of Theorem 2 in [2], where we assumed p_2/3.

Theorem 4. There is a formal symbol ,=otS(x,) which
satisfies
(3.5) :exp {p(x, )} :exp {q(x, )}

-’exp {--0 r(x, )}. {1 +0 S(x, ))’,
(3.6) here is a consan C, A>O such tha

IS(x, )]<=CAk !- I]--(-) for (x, ) e 9’,
k=0, 1, 2, .... Here--2=(N+2)p--(N+l)O.

The preceding theorem asserts that the symbol of the composite
operator "e"" "e ", which is an operator o infinite order, is actorized
by exp {,..=0 r(x, )} and the quotient is a formal symbol of order 0
with principal symbol 1.

4. Invertibility. Theorem 4 yields the ollowing
Theorem 5. Let P= :P(x, ) be a holomorphic microlocal opera-

tor with symbol P(x, ) of growt.h order at most (p) defined near c*.
Suppose that liP(x, ) is also a symbol of growth order at most (p).
Then P is invertible in the ring ..

In the case o p_1/2 and o p_2/3, this theorem was given re-
spectively in [1] and in [2].

5. Outline o the proof of Theorem :. The composite operator
:exp (p(x, )} exp {q(x, )} is expressed by :R(t x, ) :. Here

(5.1) R(t; x, )= 0.= t ,,= :1--3 exp (p(x, )}. 3 exp (q(x, )}.

Set

Then H satisfies the following differential equation.

(5.3)
[//]__0-- exp {p(x, )+ q(y, ])}.

The solution to (5.3) in the space of ormal power series in t whose
coefficients are differential polynomials o p(x, ) and q(y, ) is unique.
Now we assume that H has the orm
(5.4)

Then {w} must satisfy recursion formula (3.2). Since R(t; x,)
H(t x, x,

ormal symbol. However, it is not trivial that 7=0 tr(x, ) is a formal
symbol. To prove it, we have to use the following inequality" There
is C>0 so that

--I j--++l

(5.5) Z (k+)--(]-k+ l)---’
=0
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C. (]+ 2)-- for ] 1, 2, 3, ,= 1, 2,

Detailed proof will be published elsewhere.
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