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1. Introduction. Let X be a Banach space with norm [l’l[ and
B(Y, X) be the totality of bounded linear operators mapping Y into X.
A subset C(t), t e R of B(X,X) is called a strongly continuous cosine
family in X if
( 1 ) C(tq-s)-FC(-s)--2C()C(s) for all t,s e R
( 2 ) C(O)--I;
( 3 ) C(t)x is continuous in t e R for each fixed x e X.
The associated sine family is given by

S(t)x=: C(r)xdr

or x e X and t e R. The infinitesimal generator is the operator
A" D(A)--X defined by Ax=limo 2h-(C(h)-I)x or x e D(A), where
D(A)={x e X" lim0 h-(C(h)-I)x exists}. It is well known that 2or
2w, 2 belongs to the resolvent set o A nd or x e X

(4) (-A)- x=[; e-C(t)xdt,

where is a constant with 1og(1+2 1C(1)1). (See [1, p. 90].)
The cosine 2amily in X with generator A is associated with the

Cauchy problem 2or the abstract evolution equation o second order
in X
(5) du/dt=Au, t eR; u(0)=u, u’(0)=x.
It is natural to try to convert (5) into well-posed first order system

and to make use of the extensive theory of groups. (See, for ex-
ample [6].)

For strongly continuous cosine family C(t), t e R in X with the
infinitesimal generator A, we are concerned with the set

E= {x e X; C(t)x is once continuously differentible in t e R}.
Kisyfiski [2] proved the important acts that the set E under the norm

lul=llull+Max (IC’(s)ul" 0<=s__< }
becomes a Banach space and that (5) can always be converted into the
well-posed problem (6) in the Banach space E X.

In order to make this conversion more convenient we will, in this
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paper, deal with the characterization of the set E in terms of the,

generator A, and will then apply it to a perturbation theory or (5).
Theorem 1. Let A be the infinitesimal generator of a strongly

continuous cosine family in X. Then
( ) the set E is the closure of D(A) with respect to the norm
[ul=llull+Sup {ll(1/n !)(2-o)/(-d/d2)A(2-A)-ull >o,

n=0, 1, ...}
and satisfies, after the replacement by A of A-b, b e R if necessary,.

(ii) D((--A))cEcD((--A)) continuously

for any and fl with 0_<_1/2fl_<_1.
Theorem 2. Let A be the infinitesimal generator of a strongly

continuous cosine family in X, and B belong to B(E, X). Then A+B
is the infinitesimal generator of a strongly continuous cosine family
in X.

Corollary 1. Let A be such as in the theorem. Suppose that B
is a closed linear operator in X satisfying D(B)D(A), and that there
exist positive numbers C,/(o and an integer N>=O such that

[]Bull<=C Ilull+C (1/N !)(l-oo)/(-d/d/)A(l--A)-ull
for all u e D(A). Then the conclusion of the theorem is true.

Corollary 2. Let A be such as in the theorem and replace A-b,
b e R if necessary. Let B belong to B(D((--A)"), X), 0__<a1/2, where
D((--A)") is the domain of (-A)" with the graph norm. Then the
conclusion of the theorem is true.

Corollary 3 (Travis and Webb [5]). Let A be such as in the
theorem. Let B be a closed linear operator in X such that S(t)XD(B)
for all t e R and BS(t)x is continuous in t e R for each fixed x e X.
Then the conclusion of the theorem is true.

2. Characterization of E. We begin with recalling some prop-
erties of a strongly continuous cosine family C(t), t e R in X with the
infinitesimal generator A, of which we will make later use.
( 7 ) S(t+s)-S(t-s)=2C(t)S(s) for t, s e R,
( 8 ) C(t+s)-C(t-s)=2AS(t)S(s) for t,s e R,

2 S(r)xdr=x for x eX,( 9 ) lim0 h---(10) (C(t)-I)x=A .[to S(r)xdr or x e Z and t e R.

Since A is a closed linear operator in X, (10) is a simple conse-
quence of (9) and the equality

(C(t)-I) S(r)xdr=(C(h)-I)o S(r)xdr.

Lemma 1. The following statements are mutually equivalent"
( ) xeE;
(ii) S(t)x e D(A) for t e R and AS(t)x is, continuous in t e R
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(iii) S(t)x e D(A) for t e [0, 1] and AS(t)x is continuous in t e [0, 1].
In this case C’(t)x=AS(t)x, and for (olog (1+2

(11) IIC’(t)x Ieltl Max {IC’(s)xl Osl}.
Proof. The equivalence will be clear from (7), (9) and (10).

Making use of (7) and choosing so large that e-+2 ]C(1)]] e-l,
we can prove by induction on n that (11) is valid for t e [0, n], n= 1, 2,

Q.E.D.
Lemma 2. Replace A-b2, b e R by A if necessary. Then E is

included in D((--A)O, 0=a<(1/2 and for all u e E
(12) l](-A)u =< Ca
with some constant CO independent of u (cf. [4, Proposition]).

Proof. Integration of (4) by parts yields

(13) A(-A)-u=.[ e-C’(t)udt for u e E and

which with (11) implies
Using [7, Theorem], we have that u belongs to D((--A)O and

(14) (_A)u= 2 sin (a) S[ 22-I(-A)(22-A)-lud2" Q.E.D.

The proof of Theorem 1. Differentiating (13), we have

(--d/d)A(--A)-u= e-ttne’(t)udt for u e E,
Jo

which together with (11) implies that [ul<=lul for u e E. Since D(A)
is a dense subset of E, E is included in the closure F of D(A) with
respect to the norm I" I.

Put Sn(t)=(1/n !),/(-d/d,)(,-A)-[=/ for t0 with S(0)=0.
Then or u e D(A), Sn(t)Au is dominated in [[. by (1-t(o/n)-
and tends to AS(t)u as n--o by the Post-Widder theorem. Thus we
obtain lul-[lu[Ige(lu]-IIul[) or u e D(A). Using this inequality, we
can prove FE and complete the proof o (i).

Lemma 2 asserts that the latter half of (ii) is true.
Making use of (8) and (12), we have or x e X and t e [0, 1]

I](-n)-S(t)x]l<=C_ IS(t)x]<=D
The continuity in t e [0, 1] o (-A)-S(t)x is clear rom (14) with
and u replaced by 1-fl and S(t)x respectively. Therefore, i u belongs
to D((--A)O, then -AS(t)u equals to (-A)-S(t).(-A)u, and is con-
tinuous in t e [0, 1]. Thus we obtain by Lemma 1 that u belongs to E
and [u[--[[u[[<=D [[(--A)u[[. Q.E.D.

3. Proof of perturbation results. The proof of Theorem 2. The

operator ( Io) with domain D(A) E generates a strongly continuous

in EX by Kisyflski’s theorem [2]. So doesgroup

withdomainD(A)Eby [3, Theorem 3.4] since (? ) isinB(E’xX,
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E X). Thus, using again Kisyski’s theorem, we obtain the desired
result for A /B.

Corollaries 1 and 2 are easy consequences of Theorem 1.
The proof of Corollary 3. If u e E, then by (8)

1: C(t)udt-1: (C(t)-I)udtu=-
S(t/2)AS(t/2)udt.

2
Hence the assumption implies that u belongs to D(B) and

Bu=-BS(2)u-o BS(t/2) AS(t/2)udt,

proving that B belongs to B(E, X). Q.E.D.
Remarks. Theorem 1, (i) suggests that the Hille-Yosida-Phillips

theorem or ( Io)’D(A)F-,FXisusedtoobtainanewprooo
the Da Prato-Giusti-Fattorini-Sova theorem on the generation of co-
sine families in X.

The algebraical inclusion of the latter half of Theorem 1, (ii) was
proved by Rankin, III [4]. The method is, however, quite different
from ours.
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