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1. Introduction. Let P(x,D) be a linear partial differential
operator with C-coefficients defined in R and strictly hyperbolic with
respect to x,. Let E _q)’(Y)’(R) be k-th parametrices, i.e.

P(x, D)E--0, D’-EI_-0--I,
where Y={x e R; x=0} is the initial plane (see e.g. [1]). We want
to study the sharpness of distributions E(x, y):=E8(x-y) here we
take y e Y as parameters. If we take

A A(y) := {(x, ) e T* R (x, ) is on a bicharacteristic strip
through some (y, ) e T*R with P(y, 0=0},

W= W(y) A(y),
where " T*R--R is the natural projection, then we have

sing supp E,(x, y)c W(y).
Now take a point x e W and a component of Rn\W with x e 3w.

Then E(x, y) is said to be sharp at x from if there is a neighbour-
hood V o x and u e C(V) such that E(x, y)=u(x) on V V.

Near each point x e W, E(x, y) can be represented by a finite sum
of paired oscillatory integrals P(a, , x), for which L. Grding [3] dis-
covered a criterion for sharpness. But his arguments and proofs are
rather sketchily and, in part, incomplete. Our aim is to clarify the
situation and to give a rigorous proofs when x e W is a stable point.
Here we use

Definition. x e W is called a stable point if under small pertur-
bations of AcT*R (as conic Lagrangean manifolds) near -(x), the
configurations of W cannot be changed off local diffeomorphisms.

Note that our definition of stability may be zonsidered as a well
posedness for the problem of sharpness.

If =-(x) A consist o regular points (i.e. N: =dimT0A
g To (fibre)= 1 for 20 e u-(x) ( A), an easy criterion or sharpness are
given in [4]. So, in what ollows, we shall consider the case when
u-(x) A contains irregular points (i.e. the case when N>/2).

2. Suppose that u-(x) A consist of stable and irregular points.
Then we can prove that, as a germ at x, E(x, y) can be represented
by a finite sum of distributions of the from
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( ) G(x)=| Z((x, t))dt,
JV

multiplied by smooth functions. Here q e Z /2, Z (t) q(t + iO)
+aZq(t-iO) and a= _+ 1 are determined by the Maslov index. Further
q(t +__ i0) lim., Zq(t +_ is) e 2’(R) are defined by boundary values on the
real axis of the analytic functions

Z(z) [F(-- q)e-qzq, q=O, 1, 2, ...,
[z(log z-+c+i)/q!, q=O, 1, 2, ...,

defined on--=arg z, where c=q-+c_ and c0=F’(1). Finally
(x, t) is real valued function with dim t=N-1 and

A= {(x, d(x, )) (x, t)= 0, d(x, t)= 0} near 0,
where e=-(x)A and V is a neighbourhood of 0 where 2o

(xo, d(xo, o)).
Now we shall study the integral (.). We can assume, without

loss of generality, that (x, t)=(0, 0). Further we can prove that if
(x,t) is stable, there is a local diffeomorphism (,t)near (0, 0)e R"
R- with 2--2(x), t=t(x, t) such that G(x) can be represented by

z;((, ))d

multiplied by a smooth function, where (2, t) is a function of the form

(**) (, ) -=f0() + E f()+.
Here f(t)) (]=0, 1, ..., k--l) re certain polynomials o t) (see e.g. [2]).
Thus in what ollows we shall assume that (x, t) has the orm (**).

In the ollowing we shall consider the case when q e Z. The case
when q is a hal integer will be treated similarly. By studying the
zeros of the equation (x, )+i=0 or small e, we hve

Lemma 1. Take a neighbourhood X of x=O small enough. Then,
for any fixed x e X\W, there is a small o0 and a C-vector field V

v(x, t ) e R- such that (i) (x, t 0)--0, (ii) (x,+ i(x, 0 D)=/=O
for all with 0 <o and (iii) d(x, +iv(x, D) ((dr(x, )) / d) I--o O.

Further we have
Lemma 2. For any fixed x e X\W, there is a neighbourhood U

of x such that (i) (y, 8+iv(x,O;D).O and (ii) d(y, 8+iv(x,O;D)
((dv(x,;D)/dDl=o>O for all y e U.

By Lemma 1, if x e X\W, we can represent G(x) as

G(x) z((x, ))d,
(x)

where (x) is an (N-1)-chain with natural orientation in a complex
neighbourhood iTcC- of VR- determined by v(x,t;D and a.

Further, by Lemma 2, we have

G;(y)= Z(P(Y, O))dO for all y e U.
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Especially we have that Gq(x) is analytic in X\W. Using this expres-
sion, we can make a criterion for sharpness of Gq(x) in terms of the
chain .(x) or its homology class.

:. Let us fix a complex neighbourhood I? C- of VR- and
takeXR as a small neighbourhood of the origin. Note that, though
X may depend on V, (.) defines the same germs at the origin modulo
analytic functions as long as V contains the origin.

For fixed x e X, we write

Then for eachx e X\W, the .chain .,(x) determines an (N- 1)-th relative
homology class a(x a) -[.(x)] e H_(V, V).

Next we take a point x e W and a component o of X\W. Further
take a smooth path 2={xt; 0<t<l} in with an end pointx-xt]t__
such that g 3w= {x}. Then we can ormulate our criterion for
sharpness.

Theorem 1. Gq(x) is sharp at x from o if there is a relative
cycle in X such that (i) [.] e H_(V0, V0) and (ii) [.]=[.(x)] in
H_t(V, $V) for every suciently small t >0.

We call the condition (i) and (ii) of Theorem 1 the local Petrowsky
condition.

Now we return to the problem for the distributions E(x, y) them-
selves. Then we have

Theorem 2. Take x e W and a curve with an end point x in
a component o of R\W. Suppose that all the points in =-(x) A are
stable points. Then there associate 1-parameter families of relative
homology groups as above such that the local Petrowsky condition
implies the sharpness of E(x, y) at x from o.

Next, we write
z.

Let : (V, V)=-->(Z, Z) be the inclusion mappings and let. H_(V, V) I ;, e H_(Z, Z)
be mappings induced by . If we can clariy the structure of the map-
pings ., we can restate the theorems (or local Petrowsky condition)
in more explicit way. For example, suppose (x, 0) is an A-type
function i.e.

(x, 0)=0/+xO-+. +x_t+x.
Then a(x; a)determine the same homology class in H(Z, Z) as long
as x belongs to the same component (o. We shall write this class by
.(o a) e H(Z, Z). Then we have

Theorem :. Let (x, 0) be an A-type function. Then Gq(X) is
sharp at x from o if and only if there is a chain fle H(Vx0,/Vo)
such that a,((o a)= .fl.
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For the case when q is a half integer, a similar arguments are
possible. In doing so, however, we have to consider instead of V etc.,
the double covering of V etc., branched at (x, 8)-0. In this case,
there are delicate problems in selection of branches of the cycles. The
details will appear elsewhere [6]. See also [5] for explicit clculations
when (x, ) is A-type.
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