60. On Formal Groups over Complete Discrete Valuation Rings. I

By Keiichi OSHIKAWA

Department of Mathematics, Musashi Institute of Technology (Communicated by Shokichi IYANAGA, M. J. A., May 12, 1982)

1. Introduction. Let R be a complete discrete valuation ring, K the quotient field of R, p the maximal ideal of R, π a generator of p. Put R/p=k. We assume that the characteristic ch(K) of K is 0, and ch(k)=p. We denote with ν the additively written valuation of K with $\nu(\pi)=1$. We put $\nu(p)=e$.

Let F(X, Y) be a commutative formal group over R. Let n be any natural number ≥ 1 . If $u, v \in p^n$, then $F(u, v) \in p^n$. We shall write u + v for F(u, v). Thus p^n forms a commutative group with this operation +, which will be denoted with $(p^n, +)$. It is well-known that there exists a formal power series $l_F(X) \in K[[X]]$ of the form

$$l_F(X) = \sum_{n=1}^{\infty} c_n X^n, \quad c_1 = 1, \quad nc_n \in R$$

such that

 $F(X, Y) = l_F^{-1}(l_F(X) + l_F(Y)).$ (Cf. Fröhlich [1].) It is also known that for sufficiently large n, $(\mathfrak{p}^n, \dot{+})$ is mapped isomorphically onto \mathfrak{p}^n (a commutative group with ordinary addition as operation) by l_F , the inverse map being given by l_F^{-1} (cf. [1]).

In this note, we shall give a "precise" value of α , such that this takes place for $n > \alpha$.

This result implies that, if $(p^n, +)$ has a torsion element $u, \nu(u)$ should be bounded by a value depending on F.

In a subsequent note we shall estimate the above value α under the hypothesis that F(X, Y) is a "specialization of a generic formal group" in the sense which will be explained later.

Our results will be then applied to elliptic curves to improve the classical "Theorem of Lutz".

In the sequel Z, Q, Z_p, F_p will mean as usual the ring of rational integers, the rational number field, the ring of *p*-adic integers and the finite field with *p* elements, respectively.

The detailed proofs will appear elsewhere.

I would like to thank Prof. S. Iyanaga who has encouraged me to complete this study. I also thank Prof. M. Hazewinkel for giving me precious advice.

2. The properties of $(\mathfrak{p}, \dot{+})$. For natural number $m \geq 2$, let us

define inductively [2] (X) = F(X, X), [m](X) = F(X, [m-1](X)). [m](X) is clearly represented by a formal power series in X with coefficients in R beginning with mX.

 \mathbf{Put}

$$[p](X) = pX + d_2X^2 + \cdots + d_nX^n + \cdots$$

We have $d_i \in R$. We define now

$$\alpha = -\min_{i \ge 2} \frac{1}{i-1} \nu \left(\frac{d_i}{p} \right)$$

(obviously $-\alpha$ is the slope of the first segment of the Newton polygon of [p](X)/pX as defined in [3], p. 90).

Proposition 1. If $\nu(x) > \alpha$, $x \in K$, then for any natural number n, we have

$$[p^n](x) = p^n x(1+x_n)$$
 with $x_n \in \mathfrak{p}$.

This is easily shown by induction on n.

It is known that l_F converges on \mathfrak{p}^n for any natural number n, and we have a homomorphism $l_F:(\mathfrak{p}^n, \dot{+}) \to \mathfrak{p}^n$. (Cf. Fröhlich [1] Theorem 3, p. 109.) We have also

$$l_F(X) = \lim_{n \to \infty} p^{-n}[p^n](X)$$

by Hazewinkel [2] (Proposition (5.4.5), p. 31). Hence follows by Proposition 1 $\nu(l_F(x)) = \nu(x)$.

Then we have the following

Theorem 1. If $n > \alpha$, l_F^{-1} converges on \mathfrak{p}^n , and $l_F: (\mathfrak{p}^n, \dot{+}) \rightarrow \mathfrak{p}^n$ is an isomorphism.

Remark 1. As $-\alpha$ is the slope of a segment of the Newton polygon of [p](x)/pX, there exists $\xi \in \overline{K}$ such that $[p](\xi) = 0$, and $\overline{\nu}(\xi) = \alpha$ ([3], Theorem 14 Cor. p. 98), where \overline{K} is the algebraic closure of K, and $\overline{\nu}$ is the extension of ν to \overline{K} .

Our value of α is "precise" in the following sense.

Suppose $K \ni \xi$ for ξ with $[p](\xi) = 0$, $\nu(\xi) = \alpha$. In this case, " $(\mathfrak{p}^n, \dot{+}) \simeq \mathfrak{p}^n$ for $n > \alpha$ " can not hold for any smaller value of α than ours.

Remark 2. In case ch(k)=0, it is easily seen that l_F^{-1} converges on \mathfrak{p}^n for any n>0.

Now we can define in $(\mathfrak{p}^n, \dot{+})$, if $n > \alpha$, a structure of *R*-module by defining $[r](X) = l_F^{-1}(rl_F(X))$ for $r \in R$, and l_F gives an *R*-module isomorphism of $(\mathfrak{p}^n, \dot{+})$ into \mathfrak{p}^n .

In $(p^n, +)$ we can define a structure of Z_p -module. In fact we have, $R \supset Z_p$. Let $r \in Z_p$ and r = m + r', $m \in Z$, $r' \in Z_p$ with $p^n | r'$, where $n > \alpha$.

For $x \in \mathfrak{p}$, we can define

 $[r](x) = [m](x) + l_F^{-1}(r'l_F(x)).$

We see easily that $(\mathfrak{p}, \dot{+})$ is a \mathbb{Z}_p -module by this operation [r](x).

Corollary 1. When k is a finite field with cardinal p^{f} . $(p^{n}, +)$ is

a Z_p -module of rank ef, for $n > \alpha$.

Corollary 2. (a) A torsion element u of (p, +) has a p-power order.

(b) Let k be a finite field with cardinal p^{f} . $(\mathfrak{p}, \dot{+})$ is the direct product of a free \mathbb{Z}_{p} -module of rank ef and a finite abelian group with p-power order.

References

- [1] A. Fröhlich: Formal groups. Lect. Notes in Math., vol. 74, Springer-Verlag, Berlin (1968).
- [2] M. Hazewinkel: Formal Groups and Applications. Academic Press, New York (1978).
- [3] N. Koblitz: *p*-adic numbers, *p*-adic analysis, and zeta-functions. Graduate texts in mathematics 58, Springer-Verlag, Berlin (1977).
- [4] E. Lutz: Sur l'équation $y^2 = x^3 Ax B$ dans les corps p-adiques. J. reine angew. Math., 177, 238-247 (1937).