60. On Formal Groups over Complete Discrete Valuation Rings. I

By Keiichi Oshikawa
Department of Mathematics, Musashi Institute of Technology
(Communicated by Shokichi Iyanaga, m. J. A., May 12, 1982)

1. Introduction. Let R be a complete discrete valuation ring, K the quotient field of R, \mathfrak{p} the maximal ideal of R, π a generator of \mathfrak{p}. Put $R / \mathfrak{p}=k$. We assume that the characteristic $\operatorname{ch}(K)$ of K is 0 , and $\operatorname{ch}(k)=p$. We denote with ν the additively written valuation of K with $\nu(\pi)=1$. We put $\nu(p)=e$.

Let $F(X, Y)$ be a commutative formal group over R. Let n be any natural number $\geqq 1$. If $u, v \in \mathfrak{p}^{n}$, then $F(u, v) \in \mathfrak{p}^{n}$. We shall write $u \dot{+} v$ for $F(u, v)$. Thus \mathfrak{p}^{n} forms a commutative group with this operation $\dot{+}$, which will be denoted with $\left(\mathfrak{p}^{n}, \dot{+}\right)$. It is well-known that there exists a formal power series $l_{F}(X) \in K[[X]]$ of the form

$$
l_{F}(X)=\sum_{n=1}^{\infty} c_{n} X^{n}, \quad c_{1}=1, \quad n c_{n} \in R
$$

such that

$$
F(X, Y)=l_{F}^{-1}\left(l_{F}(X)+l_{F}(Y)\right) . \quad \text { (Cf. Fröhlich [1].) }
$$

It is also known that for sufficiently large $n,\left(p^{n}, \dot{+}\right)$ is mapped isomorphically onto \mathfrak{p}^{n} (a commutative group with ordinary addition as operation) by l_{F}, the inverse map being given by l_{F}^{-1} (cf. [1]).

In this note, we shall give a "precise" value of α, such that this takes place for $n>\alpha$.

This result implies that, if $\left(\mathfrak{p}^{n}, \dot{+}\right)$ has a torsion element $u, \nu(u)$ should be bounded by a value depending on F.

In a subsequent note we shall estimate the above value α under the hypothesis that $F(X, Y)$ is a "specialization of a generic formal group" in the sense which will be explained later.

Our results will be then applied to elliptic curves to improve the classical "Theorem of Lutz".

In the sequel $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{Z}_{p}, \boldsymbol{F}_{p}$ will mean as usual the ring of rational integers, the rational number field, the ring of p-adic integers and the finite field with p elements, respectively.

The detailed proofs will appear elsewhere.
I would like to thank Prof. S. Iyanaga who has encouraged me to complete this study. I also thank Prof. M. Hazewinkel for giving me precious advice.
2. The properties of $(\mathfrak{p}, \dot{+})$. For natural number $m \geqq 2$, let us
define inductively [2] $(X)=F(X, X),[m](X)=F(X,[m-1](X)) . \quad[m](X)$ is clearly represented by a formal power series in X with coefficients in R beginning with $m X$.

Put

$$
[p](X)=p X+d_{2} X^{2}+\cdots+d_{n} X^{n}+\cdots
$$

We have $d_{i} \in R$. We define now

$$
\alpha=-\operatorname{Min}_{i \geqq 2} \frac{1}{i-1} \nu\left(\frac{d_{i}}{p}\right)
$$

(obviously $-\alpha$ is the slope of the first segment of the Newton polygon of $[p](X) / p X$ as defined in [3], p. 90).

Proposition 1. If $\nu(x)>\alpha, x \in K$, then for any natural number n, we have

$$
\left[p^{n}\right](x)=p^{n} x\left(1+x_{n}\right) \quad \text { with } \quad x_{n} \in \mathfrak{p} .
$$

This is easily shown by induction on n.
It is known that l_{F} converges on \mathfrak{p}^{n} for any natural number n, and we have a homomorphism $l_{F}:\left(\mathfrak{p}^{n}, \dot{+}\right) \rightarrow \mathfrak{p}^{n}$. (Cf. Fröhlich [1] Theorem 3, p. 109.) We have also

$$
l_{F}(X)=\lim _{n \rightarrow \infty} p^{-n}\left[p^{n}\right](X)
$$

by Hazewinkel [2] (Proposition (5.4.5), p. 31). Hence follows by Proposition $1 \nu\left(l_{F}(x)\right)=\nu(x)$.

Then we have the following
Theorem 1. If $n>\alpha, l_{F}^{-1}$ converges on \mathfrak{p}^{n}, and $l_{F}:\left(\mathfrak{p}^{n}, \dot{+}\right) \rightarrow \mathfrak{p}^{n}$ is an isomorphism.

Remark 1. As $-\alpha$ is the slope of a segment of the Newton polygon of $[p](x) / p X$, there exists $\xi \in \bar{K}$ such that $[p](\xi)=0$, and $\bar{\nu}(\xi)$ $=\alpha$ ([3], Theorem 14 Cor. p. 98), where \bar{K} is the algebraic closure of K, and $\bar{\nu}$ is the extension of ν to \bar{K}.

Our value of α is "precise" in the following sense.
Suppose $K \ni \xi$ for ξ with $[p](\xi)=0, \nu(\xi)=\alpha$. In this case, " $\left(\mathfrak{p}^{n}, \dot{+}\right)$ $\simeq \mathfrak{p}^{n}$ for $n>\alpha "$ can not hold for any smaller value of α than ours.

Remark 2. In case $\operatorname{ch}(k)=0$, it is easily seen that l_{F}^{-1} converges on \mathfrak{p}^{n} for any $n>0$.

Now we can define in $\left(\mathfrak{p}^{n}, \dot{+}\right)$, if $n>\alpha$, a structure of R-module by defining $[r](X)=l_{F}^{-1}\left(r l_{F}(X)\right)$ for $r \in R$, and l_{F} gives an R-module isomorphism of ($\mathfrak{p}^{n}, \dot{+}$) into \mathfrak{p}^{n}.

In ($\mathfrak{p}^{n}, \dot{+}$) we can define a structure of \boldsymbol{Z}_{p}-module. In fact we have, $R \supset \boldsymbol{Z}_{p}$. Let $r \in \boldsymbol{Z}_{p}$ and $r=m+r^{\prime}, m \in \boldsymbol{Z}, r^{\prime} \in \boldsymbol{Z}_{p}$ with $p^{n} \mid r^{\prime}$, where $n>\alpha$.

For $x \in \mathfrak{p}$, we can define

$$
[r](x)=[m](x)+l_{F}^{-1}\left(r^{\prime} l_{F}(x)\right) .
$$

We see easily that $(\mathfrak{p}, \dot{+})$ is a Z_{p}-module by this operation $[r](x)$.
Corollary 1. When k is a finite field with cardinal p^{f}. $\left(\mathfrak{p}^{n}, \dot{+}\right)$ is
a Z_{p}-module of rank ef, for $n>\alpha$.
Corollary 2. (a) A torsion element u of $(\mathfrak{p}, \dot{+})$ has a p-power order.
(b) Let k be a finite field with cardinal $p^{f} .(\mathfrak{p}, \dot{+})$ is the direct product of a free \boldsymbol{Z}_{p}-module of rank ef and a finite abelian group with p-power order.

References

[1] A. Fröhlich: Formal groups. Lect. Notes in Math., vol. 74, Springer-Verlag, Berlin (1968).
[2] M. Hazewinkel: Formal Groups and Applications. Academic Press, New York (1978).
[3] N. Koblitz: p-adic numbers, p-adic analysis, and zeta-functions. Graduate texts in mathematics 58, Springer-Verlag, Berlin (1977).
[4] E. Lutz: Sur l'équation $y^{2}=x^{3}-A x-B$ dans les corps p-adiques. J. reine angew. Math., 177, 238-247 (1937).

