57. Conformally Related Product Riemannian Manifolds

By Yoshihiro TASHIRO and In-Bae KIM Department of Mathematics, Hiroshima University

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1982)

Introduction. Let M and M^* be product Riemannian manifolds of dimension $n \ge 3$, and denote the structures by (M, g, F) and (M^*, g^*, G) respectively. The product structures F of M and G of M^* are different from the identity tensor I and satisfy the relations

 $F^2 = I$, $G^2 = I$,

$$g(FX, FX) = g(X, X), \qquad g^*(GX^*, GX^*) = g^*(X^*, X^*)$$

for any vector X of M and any vector X^* of M^* . The integrability conditions of F and G in M and M^* are

$$\nabla_x F = 0, \qquad \nabla^*_{x*} G = 0,$$

where we have denoted by V and V^* covariant differentiations with respect to g and g^* respectively. A conformal diffeomorphism f of M to M^* is characterized by the change

$$g^* = \rho^{-2}g$$

of the metric tensors, where ρ is a positive valued scalar field.

Under a diffeomorphism f of M to M^* , the image of a quantity on M^* by the induced map f^* of f will be denoted by the same character as the original. The structures F and G are said to be *commutative* with one another at a point P of M under f if FG=GF at P. In a previous paper [2], one of the present authors has proved the following

Theorem A. If both product Riemannian manifolds M and M^* are complete, then there is no global non-homothetic conformal diffeomorphism of M to M^* such that the product structures F and G are not commutative under it at a point of M.

As the contraposition of Theorem A, we can state

Theorem B. Let both product Riemannian manifolds M and M^* be complete. If there exists a global non-homothetic conformal diffeomorphism f of M onto M^* , then the diffeomorphism f has to make the product structures F and G commutative everywhere in M.

By virtue of Theorem B, we shall investigate product Riemannian manifolds admitting a global non-homothetic conformal diffeomorphism. The purpose of the present paper is to prove the following

Theorem. Let both M and M^* be complete, connected and simply connected product Riemannian manifolds of dimension $n \ge 3$. If there is a global non-homothetic conformal diffeomorphism f of M onto M^* ,

(0.1)

then the underlying manifold of M and M^* is the product $N_1 \times N_0 \times N_2$ of three complete Riemannian manifolds N_1 , N_0 and N_2 and the associated scalar field ρ with f depends on one part, say N_0 , only. If the metric forms of N_1 , N_0 and N_2 are denoted by ds_1^2 , ds_0^2 and ds_2^2 respectively, then

(1) *M* is the product $M_1 \times N_2$, where M_1 is an irreducible complete Riemannian manifold, and the metric form of *M* is written as (0.2) $\rho^2 ds_1^2 + ds_0^2 + ds_2^2$

on the underlying manifold $N_1 \times N_0 \times N_2$, and

(2) M^* is the product $N_1 \times M_2^*$, where M_2^* is an irreducible complete Riemannian manifold, and the metric form of M^* is written as (0.3) $ds_1^2 + \rho^{-2}(ds_0^2 + ds_2^2)$

on the same underlying manifold $N_1 \times N_0 \times N_2$.

1. Preliminaries. Throughout the present paper, we assume that the differentiability of manifolds, diffeomorphisms and quantities is of class C^{∞} . Greek indices run on the range 1 to n. Let M be the product $M_1 \times M_2$ of two Riemannian manifolds M_1 and M_2 of dimension n_1 and n_2 respectively, $n_1+n_2=n$. The manifolds M_1 and M_2 are called parts of M. Let (x^n, x^p) be a separate coordinate system of M such that (x^n) and (x^p) are local coordinate systems of the parts M_1 and M_2 respectively. Here and hereafter Latin indices run on the ranges:

> $h, i, j, k, \dots = 1, 2, \dots, n_1;$ $p, q, r, s, \dots = n_1 + 1, \dots, n.$

In such a coordinate system of M, the metric tensor $g = (g_{\mu i})$ of M has pure components only, and the product structure $F = (F_i^c)$ has pure components $F_i^h = \delta_i^h$ and $F_q^p = -\delta_q^p$ only. The restrictions of the covariant differentiation V of M on the parts M_1 and M_2 are expressed by V_i and V_q respectively. They are commutative with one another.

Under a conformal diffeomorphism f of M to M^* , we see that the induced tensor G from M^* to M constitutes an almost product Rimannian structure together with the metric g on M but is not necessarily integrable. The covariant tensor $G_{\mu\lambda}$ defined by $G_{\mu\lambda} = G_{\mu}^{\epsilon}g_{\epsilon\lambda}$ is symmetric in λ and μ . The product structures F and G are commutative under f if and only if G_{λ}^{ϵ} and $G_{\mu\lambda}$ have pure components only with respect to a separate coordinate system in M.

If the metric g^* of M^* is conformally related to g of M by (0.1), then the integrability condition $V^*_{\mu}G^*_{\lambda}=0$ of G in M^* is equivalent to the differential equation

(1.1) $\nabla_{\mu}G_{\lambda\epsilon} = -\rho^{-1}(G_{\mu\lambda}\rho_{\epsilon} + G_{\mu\epsilon}\rho_{\lambda} - g_{\mu\lambda}G_{\epsilon\omega}\rho^{\omega} - g_{\mu\epsilon}G_{\lambda\omega}\rho^{\omega})$ on *M*, where we have put $\rho_{\lambda} = \nabla_{\lambda}\rho$ and $\rho^{\epsilon} = \rho_{\epsilon}g^{\lambda\epsilon}$.

We recall two lemmas in [1] of local versions.

Lemma 1. A conformal diffeomorphism f of M onto M^* is

homothetic if and only if $\nabla_{\mu}G_{\lambda x}=0$. Then the structures F and G are commutative under f. In particular, if f preserves the product structures, that is, $G=\pm F$, then f is homothetic.

Lemma 2. If the structures F and G are commutative under a non-homothetic conformal diffeomorphism f, then the associated scalar field ρ is a function on either of the parts M_1 or M_2 only.

We notice that, if the scalar field ρ is a function of both M_1 and M_2 , then F and G are not commutative under f and hence there is no global non-homothetic conformal diffeomorphism having ρ as the associated scalar field.

Now we shall give Lemma 2 a global version as follows:

Lemma 3. Let both M and M^{*} be product Riemannian manifolds. If the structures F and G are commutative under a non-homothetic conformal diffeomorphism f of M onto M^{*}, then the associated scalar field ρ is a function on either M₁ or M₂ only over the whole manifold M.

Proof. By means of the commutativity of F and G, the structure G is pure and the equation (1.1) referred to a separate coordinate system splits into the following equations:

(1.2)
$$\nabla_{j}G_{ih} = -\rho^{-1}(G_{ji}\rho_{h} + G_{jh}\rho_{i} - g_{ji}G_{hk}\rho^{k} - g_{jh}G_{ik}\rho^{k});$$

(1.3) $V_q G_{ji} = 0;$

(1.4) $\nabla_{j}G_{pi} = -\rho^{-1}(G_{ji}\rho_{p} - g_{ji}G_{pr}\rho^{r}) = 0;$

(1.5)
$$V_{q}G_{pi} = -\rho^{-1}(G_{qp}\rho_{i} - g_{qp}G_{ih}\rho^{h}) = 0;$$

(1.6) $V_{j}G_{qp}=0;$

(1.7)
$$\nabla_r G_{qp} = -\rho^{-1} (G_{rq}\rho_p + G_{rp}\rho_q - g_{rq}\rho_{ps}\rho^s - g_{rp}G_{qs}\rho^s).$$

The equations (1.3) and (1.6) mean that $G_1 = (G_i^h)$ depends on M_1 only and $G_2 = (G_q^p)$ does on M_2 only.

If there are two points P and Q such that $\rho_i(P) \neq 0$ and $\rho_q(Q) \neq 0$, then it follows from (1.4) that G_1 is proportional to $I_1 = (\delta_i^h)$ and hence $G_1 = \pm I_1$ on the whole manifold M because of $G^2 = I$ and the independence of G_1 on M_2 . Similarly we have, from (1.5), $G_2 = \pm I_2$ on the whole manifold M, where $I_2 = (\delta_q^p)$. Since G is different from I, we have $G = \pm F$ on the whole manifold M and hence f is homothetic by Lemma 1. This contradicts to the non-homothety of f. Therefore the associated scalar field ρ should be a function dependent of one part only. Q.E.D.

2. Proof of Theorem. Since there exists a global non-homothetic conformal diffeomorphism f of M onto M^* , it follows from Theorem B that the product structures F and G are commutative everywhere in M and from Lemma 3 that ρ may be assumed as a function of M_1 only. As seen in the proof of Lemma 3, we have $G_2 = \pm I_2$. Choose $G_2 = I_2$. Then we have $G_{qp} = g_{qp}$ with respect to a separate coordinate system (x^h, x^p) in M.

No. 5] Conformally Related Product Riemannian Manifolds

We denote by $M_1(P)$ the part M_1 passing through any point P of M and by M'_1 the image $f(M_1(P))$ of $M_1(P)$ by f. If we denote by $\overline{ds_1^2}$ and ds_2^2 the metric forms of M_1 and M_2 respectively, then the induced metric form of M'_1 in M^* is identical with $\rho^{-2}\overline{ds_1^2}$. The part M_1 is simply connected, and so is the image M'_1 . Since M^* is complete, the submanifold M'_1 is also complete.

Since the equation (1.2) leads to the integrability condition \mathcal{V}^*G_1 =0 of G_1 on M'_1 and we have chosen $G_2=I_2$, the structure G_1 on M'_1 can be written in the form $G_1=-I_1$ or

$$(2.1) G_1 = \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix}.$$

If $G_1 = -I_1$, then we have $G = \pm F$ and hence f is homothetic by Lemma 1. Thus G_1 must be of the form (2.1) on M'_1 . It follows from (2.1) that M'_1 is a product Riemannian manifold $N_1 \times N_0$ of two complete Riemannian manifolds N_1 and N_0 . Since $G_{qp} = g_{qp}$, the equation (1.5) implies $G_i^h \rho_h = \rho_i$. From this equation and (2.1), we easily see that the associated scalar field ρ depends on N_0 only. If we denote by ds_1^2 and ds_0^2 the metric forms of N_1 and N_0 respectively, then the underlying manifold of the part M_1 of M is $N_1 \times N_0$ and the metric form ds_1^2 is written as $ds_1^2 = \rho^2 (ds_1^2 + ds_0^2)$. Putting $N_2 = M_2$ and rewriting ds_0^2 in place of $\rho^2 ds_0^2$, we see that the underlying manifold of M is the product N_1 $\times N_0 \times N_2$ and the metric form is given by (0.2). The metric form of M^* is then expressed as (0.3) on the same underlying manifold $N_1 \times N_0$

If M_1 is reducible and a Riemannian product $M_1^1 \times M_1^2$ of two Riemannian manifolds M_1^1 and M_1^2 and the associated scalar field ρ depends on both the parts M_1^1 and M_1^2 , then we consider M as the product M_1^1 $\times (M_1^2 \times M_2)$ of the parts M_1^1 and $M_1^2 \times M_2$ in place of M_1 and M_2 . Theorem A and the remark following Lemma 2 show that there is no global non-homothetic conformal diffeomorphism having such ρ as the associated scalar field. Hence M_1 is irreducible. Similarly we see that M_2^* with the underlying manifold $N_0 \times N_2$ is an irreducible part of M^* .

References

- Y. Tashiro: On conformal diffeomorphisms between complete product Riemannian manifolds. J. Math. Soc. Japan, 32, 639-663 (1980).
- [2] —: On conformal diffeomorphisms between product Riemannian manifolds. Proc. Japan Acad., 57A, 38-41 (1981).