55. On the Identification of the Intersection Form on the Middle Homology Group with the Flat Function via Period Mapping

By Kyoji Saito
RIMS, Kyoto University
(Communicated by Kunihiko Kodaira, m. J. A., May 12, 1982)

§ 1. Introduction and the statement of the result. Let $\varphi: X \rightarrow S$ be a universal unfolding of a function with an isolated critical point (cf. (2.2)). In this situation, we introduced the concept of a primitive form $\zeta^{(0)}$, which is an element of the relative de-Rham cohomology module of the $\operatorname{map} \varphi: X \rightarrow S$, satisfying a certain system of bilinear differential equations on S (cf. [3] (3.2)).

Using the primitive form $\zeta^{(0)}$ (which automatically determines an infinite sequence $\zeta^{(k)}, k \in \boldsymbol{Z}$ of de-Rham cohomology classes), one defines a period mapping. (For simplicity, in this note we assume that $n=$ dimension of the fiber $X_{t}=\varphi^{-1}(t), t \in S$ of φ is even.) Namely it is given as (cf. (2.4) v)) ;

$$
\begin{equation*}
P: \tilde{S} \rightarrow H^{n}\left(X_{t}, C\right), \tilde{s} \in \tilde{S} \mapsto\left\{\gamma \in H_{n}\left(X_{t}, Z\right) \mapsto \int_{\gamma^{(s)}} \zeta^{(n / 2-1)} \in C\right\} \tag{1.1}
\end{equation*}
$$

where \tilde{S} is the monodromy covering of $S-D$ (D is the discriminant divisor in S of the map φ) and $H^{n}\left(X_{t}, C\right)$ is the middle cohomology group of a general fiber X_{t} of φ.

We have also introduced the concept of a flat function z on S associated with the primitive form $\zeta^{(0)}$ by

$$
\begin{equation*}
d z=\sum_{i=1}^{n} K^{(0)}\left(\nabla_{\partial / \partial t_{i}} \zeta^{(-1)}, \zeta^{(0)}\right) d t_{i}, \quad E z=(1-s) z \tag{1.2}
\end{equation*}
$$

(cf. (2.4) iv)).
Then, in this note, we prove the following
Theorem 1. Assume that the Poincare duality σ on the middle homology of the general fiber X_{t} of φ
(1.3) $\sigma: H_{n}\left(X_{t}, Z\right) \rightarrow H^{n}\left(X_{t}, Z\right)$
is non-degenerate. Or, equivalently, that the intersection pairing
(1.4) $\quad I: H_{n}\left(X_{t}, Z\right) \times H_{n}\left(X_{t}, Z\right), \quad\left(\gamma, \gamma^{\prime}\right) \mapsto\left\langle\sigma(\gamma), \gamma^{\prime}\right\rangle$
is non-degenerate.
Then there exist constant numbers c, s such that the following diagram is commutative:

where Q is the quadratic form on $H^{n}\left(X_{t}, C\right)$ defined by

(1.5) $Q: e \in H^{n}\left(X_{t}, C\right) \mapsto\left\langle\sigma^{-1} e, e\right\rangle \in C$.

For the proof in § 2 we need to recall some basic concepts and results about primitive forms for a universal unfolding of a hypersurface, which are developed in [2], [3]. The proof of Theorem 1, given in §3, is then a straightforward consequence of the algebraic representation formula for the intersection form (cf. (2.4) vi)).
§2. Primitive forms for a universal unfolding of a function. We recall several concepts and construction from [2], [3]. More details are found in the references.
(2.1) Let $(Z, 0) \xrightarrow{\hat{\pi}}(X, 0)$ be a Cartesian diagram between

smooth varieties with base points 0 . Assume that p, q are submersions of relative dimension $n+1$ and $\hat{\pi}, \pi$ are submersions of relative dimension 1. Assume further that there are vector fields $\hat{\delta}_{1}$ and δ_{1} on Z and S respectively such that $p_{*} \hat{\delta}_{1}=\delta_{1}$ and $\hat{\pi}^{-1} \mathcal{O}_{X}=\left\{g \in \mathcal{O}_{Z}: \hat{\delta}_{1} g=0\right\}$, $\pi^{-1} \mathcal{O}_{T}=\left\{g \in \mathcal{O}_{S}: \delta_{1} g=0\right\}$.

For convenience we employ local coordinates at 0 . Namely, let $t^{\prime}=\left(t_{2}, \cdots, t_{m}\right)$ be a local coordinate system for $(T, 0)$ and $t=\left(t_{1}, t^{\prime}\right)$ be a local coordinate system for $(S, 0)$ such that $\delta_{1} t_{1}=1$, and (x, t^{\prime}) $=\left(x_{0}, \cdots, x_{n}, t_{2}, \cdots, t_{m}\right)$ are local coordinates for ($X, 0$). Hence (x, t) $=\left(x, t_{1}, t^{\prime}\right)$ are local coordinates for ($\left.Z, 0\right)$, and $\hat{\delta}_{1}$ and δ_{1} are described by $\partial / \partial t_{1}$ in terms of these coordinates.
(2.2) Definition. A function $F(x, t)$ on Z is a universal unfolding of a function $f(x):=F(x, 0)$ if it satisfies i) $\partial F / \partial t_{1}=1$ ii) $\partial F / \partial x_{0}$, $\cdots, \partial F / \partial x_{n}$ form a parameter system in $\mathcal{O}_{z, 0}$ iii) $\partial F / \partial t_{1}, \cdots, \partial F / \partial t_{m}$ form $\mathcal{O}_{T, 0}$ free basis of $\mathcal{O}_{z, 0} /\left(\partial F / \partial x_{0}, \cdots, \partial F / \partial x_{n}\right) \mathcal{O}_{z, 0}$.

If $F(x, t)$ is given, let us denote by φ the composition of the map $\left.\hat{\pi}\right|_{\{F(x, t)=0\}} ^{-1}: X \cong\{F(x, t)=0\}$ with $\left.p\right|_{\{F(x, t)=0\}}:\{F(x, t)=0\} \rightarrow S$. We shall often not make the distinction between the $\operatorname{map} \varphi:(X, 0) \rightarrow(S, 0)$ and the universal unfolding $F(x, t)$.
(2.3) Denote $\mathcal{G}:=\sum_{i=1}^{m} \mathcal{O}_{T} \frac{\partial}{\partial t_{i}}=\left\{\delta \in \pi_{*} \operatorname{Der}_{s}:\left[\delta_{1}, \delta\right]=0\right\}$.

Definition. An element $\quad \zeta^{(0)} \in \Gamma\left(S, \mathcal{G}_{F}^{(0)}\right), \quad \mathcal{H}_{F}^{(0)}:=\varphi_{*} \Omega_{X}^{n+1} / d F_{1}$ $\wedge d \varphi_{*} \Omega_{X}^{n-1}+\Omega_{T}^{1} \wedge \varphi_{*} \Omega_{X}^{n}$ is called a primitive form if
i) $\nabla_{E} \zeta^{(0)}=(r-1) \zeta^{(0)}$
ii) $\quad K^{(k)}\left(\nabla_{\partial} \zeta^{(-1)}, \nabla_{\delta^{\prime}} \zeta^{(-1)}\right)=0 \quad$ for $k \geqq 1, \quad \delta, \delta^{\prime} \in \mathcal{G}$
iii) $\quad K^{(k)}\left(\nabla_{\delta} \nabla_{\delta^{\prime}} \zeta^{(-2)}, \nabla_{\delta^{\prime \prime}} \zeta^{(-1)}\right)=0 \quad$ for $k \geqq 2, \quad \delta, \delta^{\prime}, \delta^{\prime \prime} \in \mathcal{G}$
iv) $\quad K^{(k)}\left(t_{1} \nabla_{j} \zeta^{(-1)}, \nabla_{j^{\prime}} \zeta^{(-1)}\right)=0 \quad$ for $k \geqq 2, \quad \delta, \delta^{\prime} \in \mathcal{G}$.

Here, ∇ is the covariant differentiation by the Gauß-Manin connection,
E is the Euler vector field on S defined by $t_{1} \delta_{1}-t_{1} * \delta_{1}$ (where $t_{1} * \delta_{1}$ is the element of G s.t. $\left.\left(t_{1} * \delta_{1}\right) F \equiv t_{1} \bmod \left(\partial F / \partial x_{0}, \cdots, \partial F / \partial x_{n}\right)\right), r$ is the smallest exponent, $K^{(k)}, k \in Z$ are higher residue pairings defined on $\pi_{*} \mathcal{H}_{F}^{(0)}$ (cf. [1], [4]) and $\zeta^{(k)}:=\left(\nabla_{\delta_{1}}\right)^{k} \zeta^{(0)}$.
(2.4) i) $\zeta^{(0)}$ induces a non-degenerate \mathcal{O}_{T}-bilinear form, $J: \mathcal{G} \times \mathcal{G} \longrightarrow \mathcal{O}_{T}, \quad\left(\delta, \delta^{\prime}\right) \longmapsto K^{(0)}\left(\nabla_{j} \zeta^{(-1)}, \nabla_{j^{\prime}} \zeta^{(-1)}\right)$.
ii) $\zeta^{(0)}$ induces an \mathcal{O}_{T}-endomorphism, $N: \mathcal{G} \rightarrow \mathcal{G}$, by $J\left(N \delta, \delta^{\prime}\right)$; $=K^{(1)}\left(t_{1} \nabla_{j} \zeta^{(-1)}, \nabla_{\delta^{\prime}} \zeta^{(-1)}\right)$. In particular $N \delta_{1}=r \delta_{1}$. The eigenvalues of N are called the exponents.
iii) $\zeta^{(0)}$ induces a torsion-free integrable connection $\nabla /: \mathrm{Der}_{T}$ $\times \mathcal{G} \rightarrow \mathcal{G}$, by $J\left(\boldsymbol{\nabla} /{ }_{\delta} \delta^{\prime}, \delta^{\prime \prime}\right):=K^{(1)}\left(\nabla_{\delta} \nabla_{\delta^{\prime}} \zeta^{(-2)}, \nabla_{\delta^{\prime \prime}} \zeta^{(-1)}\right)$. A coordinate system $\left(t_{1}, \cdots, t_{m}\right)$ is called, flat, if $\nabla /\left(\partial / \partial t_{i}\right)=0, i=1, \cdots, m$.
iv) $\zeta^{(0)}$ induces a flat function z on S by the relations $d z$: $=\sum_{i=1}^{m} K^{(0)}\left(\nabla_{\partial / \partial t_{i}} \zeta^{(-1)}, \zeta^{(0)}\right) d t_{i}, E z=(1-s) z$, where $s=n+1-2 r=$ maximal exponent-smallest exponent.
v) $\zeta^{(0)}$ induces a period mapping,

$$
P: \tilde{S} \longrightarrow H^{n}\left(X_{t}, C\right), \quad \tilde{s} \longmapsto\left\{\gamma \in H_{n}\left(X_{t}, Z\right) \longmapsto \int_{\gamma(\xi)} \zeta^{(n / 2-1)} \in C\right\}
$$

where \tilde{S} is the monodromy covering of the fibration $X \rightarrow S$, and t is a generic point of \tilde{S}. Here $\gamma(\tilde{s})$ is the image of $\gamma \in H_{n}\left(X_{t}, Z\right)$ in $H_{n}\left(X_{\tilde{s}}, Z\right)$ by the parallel translation for any $\tilde{s} \in \tilde{S}$.

By definition v), the period map P is of maximal rank, iff there exist no integral exponents.
vi) The intersection number $I\left(\gamma, \gamma^{\prime}\right)$ of (1.4) is expressed as follows;

$$
I\left(\gamma, \gamma^{\prime}\right)=c^{-1} \sum_{i=1}^{m}\left(N-\frac{n}{2}\right) \frac{\partial}{\partial t_{i}} \int_{\gamma^{(\xi)}} \zeta^{(n / 2-2)}\left(\frac{\partial}{\partial t_{i}}\right)^{*} \int_{\gamma^{\prime}(\xi)} \zeta^{(n / 2-1)}
$$

where c is a constant and $\left(\partial / \partial t_{i}\right)^{*}, i=1, \cdots, m$ is the dual basis of \mathcal{G} with respect to J of (2.4) i).

It follows directly from this expression that the pairing I is nondegenerate iff there exist no integral exponents.
§3. A proof of Theorem 1. (3.1) Let $A: \tilde{S} \rightarrow H_{n}\left(X_{t}, C\right)$ be the composition $\sigma^{-1} P$ of (1.1) and (1.3).

Using Z-basis $\gamma_{1}, \cdots, \gamma_{m}$ of $H_{n}\left(X_{t}, Z\right)$, define $A^{i}(\tilde{s})$ by,

$$
A(\tilde{s})=\sum_{i=1}^{m} A^{i}(\tilde{s}) \gamma_{i} \quad \text { for } \tilde{s} \in \tilde{S}
$$

(3.2) From the definitions of the pairing I of (1.4) and the map A, one gets

$$
I(A(\tilde{s}), \gamma)=\langle P(\tilde{s}), \gamma\rangle=\int_{\gamma^{(\tilde{s})}} \zeta^{(n / 2-1)} \quad \text { for } \tilde{s} \in \tilde{S}
$$

(3.3) Let t_{1}, \cdots, t_{m} be a flat coordinate system such that $\delta_{1}=\partial / \partial t_{1}$. Let $t_{1}^{*}, \cdots, t_{m}^{*}$ be the dual coordinate system w.r.t. J of (2.4)i). Then we
have $d z=d t_{1}^{*} .\left(\because d z=\sum_{i=1}^{m} K^{(0)}\left(\nabla_{\partial / \partial t_{i}^{*}} \zeta^{(-1)}, \zeta^{(0)}\right) d t_{i}^{*}=\sum_{i=1}^{m} J\left(\partial / \partial t_{i}^{*}, \partial / \partial t_{1}\right) d t_{i}^{*}\right.$ $\left.=d t_{1}^{*}\right)$.
(3.4) Now in the formula (2.4) vii), substitute γ by $A(\tilde{s})$ $=\sum_{i=1}^{m} A^{i}(\tilde{s}) \gamma_{i}$ and γ^{\prime} by $\gamma_{k}, k=1, \cdots, m$ so that one obtains;
i) $c \int_{\gamma_{k}(\bar{s})} \zeta^{(n / 2-1)}=c I\left(A(\tilde{s}), \gamma_{k}\right)$

$$
=\sum_{i, j=1}^{m} A^{j}(\tilde{s})\left(N-\frac{n}{2}\right) \frac{\partial}{\partial t_{t}} \int_{\gamma_{j}(\bar{s})} \zeta^{(n / 2-2)} \frac{\partial}{\partial t_{i}^{*}} \int_{\tau_{k}(\bar{s})} \zeta^{(n / 2-1)} .
$$

By assumption on σ, there exist no integral exponents, and therefore the period map P is of maximal rank. Hence $\left\langle\gamma_{k}, P(\tilde{s})\right\rangle=\int_{\gamma_{k}(\delta)} \zeta^{(n / 2-1)}$ $k=1, \cdots, m$ may be regarded as coordinates for \tilde{s}. Thus multiplying the above by the inverse matrix of $\left(\partial / \partial t_{i}^{*} \int_{\gamma_{k}(3)} \zeta^{(n / 2-1)}\right)_{i, k=1, \ldots, m}$, one gets,
ii) $c\left(r-\frac{n}{2}\right)^{-1} E t_{i}^{*}=\sum_{j=1}^{m} A^{j}(\tilde{s})\left(N-\frac{n}{2}\right) \frac{\partial}{\partial t_{i}} \int_{r_{j}(s)} \zeta^{(n / 2-2)}$.
(Note that $E=\left(r-\frac{n}{2}\right) \sum_{k=1}^{m} \gamma_{k} \frac{\partial}{\partial \gamma_{k}}$, since $E \int_{r_{k}(\bar{s})} \zeta^{(n / 2-1)}$
$=\left(r-\frac{n}{2}\right) \int_{r_{k}(s)} \zeta^{(n / 2-1)}$ for $\left.k=1, \cdots, m.\right)$
In the formula ii) we put $i=1$. Noting (2.4) ii) iv) and (3.3), we get the last formula,
iii) $\quad c\left(r-\frac{n}{2}\right)^{-1} z=\sum_{j=1}^{m} A^{j}(\tilde{s}) \int_{\gamma_{j}(\tilde{s})} \zeta^{(n / 2-1)}=I(A(\tilde{s}), A(\tilde{s})) \quad(\because(3.2))$.

This completes the proof of Theorem 1.

References

[1] Namikawa, Y.: Higher residues associated with an isolated hypersurface singularity (to appear in Symposia in Mathematics, Kinokuniya-North Holland, Tokyo (1981)).
[2] Saito, K.: On the periods of primitive integrals. Harvard (1980) (preprint).
[3] --: Primitive forms for a universal unfolding of a function with an isolated critical point. J. Fac. Sci. Univ. Tokyo, Sect. IA, 29, 1-18 (1982).
[4] -_: The higher residue pairings $K_{F}^{(k)}$ for a family of hypersurface singular points (to appear in Proceeding of Symposia in Pure Mathematics, A.M.S., Arcata, 1981).

