52. Calculus on Gaussian White Noise. IV

By Izumi Kubo and Shigeo Takenaka
Department of Mathematics, Faculty of Sciences, Nagoya University
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1982)

In the previous parts of this series [11], [12], [16], we have given a foundation of calculus on Gaussian white noise and shown the relation between our formulation and Hida's one [1], [2]. In this part, we will treat two kinds of infinite dimensional Laplacians Δ_{V} and Δ_{L} related to Gaussian white noise. In the following, we will use the same notations and definitions as in $\S 5$ of Part II.
\S 12. Laplacians Δ_{V} and Δ_{L}. We have defined operators $\partial_{t}, t \in T$, in Part II. By Theorem 6.1, we can see that an operator

$$
\begin{equation*}
\Delta_{V} \equiv \int_{T} d \nu(t) \partial_{t} \partial_{t} \tag{12.1}
\end{equation*}
$$

is well defined and continuous on \mathcal{H} and that its dual is given by

$$
\begin{equation*}
\Delta_{V}^{*} \equiv \int_{T} d \nu(t) \partial_{t}^{*} \partial_{t}^{*} \tag{12.2}
\end{equation*}
$$

We call the operator Δ_{V} Volterra's Laplacian. By (6.1) in Part II, the operator $\tilde{\Delta}_{V} \equiv S \Delta_{V} \mathcal{S}^{-1}$ on \mathscr{F} is expressed in the form

$$
\begin{equation*}
\tilde{\Delta}_{V} U(\xi)=\int_{T} d \nu(t) \frac{\delta}{\delta \xi(t)} \frac{\delta}{\delta \xi(t)} U(\xi) . \tag{12.3}
\end{equation*}
$$

Lévy [17] introduced another Laplacian for functionals of a special type as follows,

$$
\begin{align*}
& \Delta\left\{\int_{T} f_{1}(u) \xi(u)^{2} d \nu(u)+\int_{T \times T} f_{2}(u, v) \xi(u) \xi(v) d \nu(u) d \nu(v)\right\} \tag{12.4}\\
& \quad \equiv 2 \int_{T} f_{1}(u) d \nu(u)
\end{align*}
$$

Motivated by this, Hida has introduced a Lapalacian for generalized Brownian functionals. We will give an extension of his definition.

Lemma 12.1. Let $V(\xi)$ be in \mathscr{F}^{*}, then there exists an element $V^{(n)}\left(\xi ; t_{1}, \cdots, t_{n}\right) \in \mathcal{E}^{* \otimes^{n}}$, such that

$$
V^{(n)}\left(\xi ; \eta_{1}, \cdots, \eta_{n}\right)=\left\langle V^{(n)}(\xi ; \cdot), \eta_{1} \hat{\otimes} \cdots \hat{\otimes} \eta_{n}\right\rangle .
$$

Take $n=2$ as a special case. Then $V^{(2)}(\xi ; t, s)$ is in $\mathcal{E}^{* \hat{ष}^{2}}$. Suppose that the generalized function $V^{(2)}(\xi ; \cdot)$ is a signed measure on T^{2} for fixed ξ. Then we can restrict the measure onto the diagonal set $D \equiv\left\{(t, s) \in T^{2} ; t=s\right\}$. We define Lévy's Laplacian $\tilde{\Delta}_{L} V$ as the mass of D with respect to the signed measure denoted by

$$
\begin{equation*}
\tilde{\Delta}_{L} V(\xi) \equiv \int_{D} V^{(2)}(\xi ; t, s) d \nu^{2}(t, s) \tag{12.5}
\end{equation*}
$$

For a Ψ in $\mathscr{H}^{*}, \Delta_{L} \Psi$ is defined by

$$
\begin{equation*}
\Delta_{L} \Psi \equiv \mathcal{S}^{-1} \tilde{\Delta}_{L} \mathcal{S} \Psi \tag{12.6}
\end{equation*}
$$

if $\tilde{J}_{L}\left(S \Psi \Psi^{*}\right)$ is well defined and it belongs to \mathscr{F}^{*}. Denote the domain of Δ_{L} by $\mathscr{D}\left(\Delta_{L}\right)$. The following theorem is obtained by Theorem 6.2 and Remark 4.6.

Theorem 12.2. (i) Δ_{V} is a continuous operator on \mathcal{H} satisfying

$$
\left\|\Delta_{V}^{k} \varphi\right\|_{\mathscr{C}^{(p)}} \leq \sqrt{(2 k)!}\left(\|\delta\| \rho^{q}\right)^{2 k}\left(1-\rho^{2 q}\right)^{-k+1 / 2}\|\varphi\|_{\mathcal{S}^{(p+q}+\varphi},
$$

(ii) Δ_{V}^{*} is a one-to-one continuous operator on \mathcal{H}^{*} satisfying
$\mathcal{S}\left(\Delta_{V}^{*} \Psi\right)(\xi)=\|\xi\|_{0}^{2} \mathcal{S} \Psi(\xi) \quad$ for $\Psi \in \mathcal{I}^{*}$,
(iii) if $\nu(T)<\infty$ and if ψ is in $\left(L^{2}\right)=\mathcal{H}^{(0)}$, then $\Delta_{V}^{*} \psi$ is in $\mathscr{D}\left(\Delta_{L}\right)$ and satisfies

$$
\frac{1}{2 \nu(T)} \Delta_{L} \Delta_{V}^{*} \psi=\psi \quad \text { and } \quad \Delta_{L} \psi=0
$$

By the theorem, we can define a one-parameter group of operators

$$
\begin{equation*}
\exp \left[\tau \Delta_{V}\right] \equiv \sum_{k=0}^{\infty} \frac{\tau^{k}}{k!} \Delta_{V}^{k} \tag{12.7}
\end{equation*}
$$

Actually we have
(12.8) $\quad\left\|\exp \left[\tau \Delta_{V}\right] \varphi\right\|_{\mathscr{H}^{(p)}} \leq 2\left(1-\rho^{2 q}\right)\|\varphi\|_{\mathcal{H}^{(p+q)}}$
for sufficiently large q as $2\left(1+2|\tau|\|\delta\|^{2}\right) \rho^{2 q}<1$.
Theorem 12.3. (i) $\left\{\exp \left[\tau \Delta_{V}\right] ; \tau \in R\right\}$ is a one-parameter group of continuous operators on \mathcal{H},
(ii) for $\varphi \in \mathcal{H}, \exp \left[\tau \Delta_{V}\right] \varphi$ is analytic in $\tau \in R$.

Proposition 12.4. We have the following formulae;
(i) $\Delta_{V} \exp [\langle x, \eta\rangle]=\|\eta\|_{0}^{2} \exp [\langle x, \eta\rangle]$, $\exp \left[\tau \Delta_{V}\right] \exp [\langle x, \eta\rangle]=\exp \left[\langle x, \eta\rangle+\tau\|\eta\|_{0}^{2}\right]$,
(ii) $\Delta_{V} H_{n}\left(\langle x, \eta\rangle ;\|\eta\|_{0}^{2}\right)=n(n-1)\|\eta\|_{0}^{2} H_{n-2}\left(\langle x, \eta\rangle ;\|\eta\|_{0}^{2}\right)$, $\exp \left[\tau \Delta_{V}\right] H_{n}\left(\langle x, \eta\rangle ;\|\eta\|_{0}^{2}\right)=H_{n}\left(\langle x, \eta\rangle ;(1-2 \tau)\|\eta\|_{0}^{2}\right)$,
(iii) $\Delta_{V}\langle x, \eta\rangle^{n}=n(n-1)\langle x, \eta\rangle^{n-2}$, $\exp \left[\tau \Delta_{V}\right]\langle x, \eta\rangle^{n}=H_{n}\left(\langle x, \eta\rangle ;-2 \tau\|\eta\|_{0}^{2}\right)$,
(iv) $\exp \left[-\Delta_{V} / 2\right]\langle x, \eta\rangle^{n}=H_{n}\left(\langle x, \eta\rangle ;\|\eta\|_{0}^{2}\right)$.

Theorem 12.5. (i) Let φ be in \mathcal{H}. Then $(\mathcal{S} \varphi)(\xi)$ can be extended to a continuous functional $(\mathcal{S} \varphi)(x)$ on \mathscr{I}^{*}, which satisfies $\exp \left[\Delta_{V} / 2\right] \varphi(x)=(\mathcal{S} \varphi)(x)$,
and hence $\varphi(x)$ has a continuous version $\mathcal{S}\left(\exp \left[-\Delta_{V} / 2\right] \varphi\right)(x)$.
(ii) Let U be in \mathscr{F}. Then the continuous extension $U(x)$ of U on \mathcal{E}^{*} belongs to \mathscr{H} and satisfies
$\left(\exp \left[-\Delta_{V} / 2\right] U(x)\right) \cdot=: U(x) \cdot:$ and $\mathcal{S}\left(\exp \left[-\Delta_{V} / 2\right] U\right)(\xi)=U(\xi)$.
Remark 12.6. By the theorem, we can think of that \mathcal{H} is a family of continuous functionals on \mathcal{E}^{*}. In this sense, \mathcal{F} coincides with the set of all restrictions of elements of \mathcal{H} to \mathcal{E}. We have that for $\varphi(x) \in \mathscr{A}$,

$$
\begin{equation*}
\left.\left(\partial_{t} \varphi\right)\right|_{\mathcal{E}}=\delta / \delta \xi(t)\left(\left.\varphi\right|_{\mathcal{E}}\right) \quad \text { and }\left.\quad\left(\Delta_{V} \varphi\right)\right|_{\mathcal{E}}=\tilde{\Delta}_{V}\left(\left.\varphi\right|_{\mathcal{E}}\right) \tag{12.9}
\end{equation*}
$$

$$
\begin{equation*}
\left|\varphi\left(x+\lambda \delta_{t}\right)-\varphi(x)-\lambda \partial_{t} \varphi(x)\right|=o(\lambda) . \tag{12.10}
\end{equation*}
$$

Corollary 12.7. Put $\varphi(x)=A^{*}\left(f_{n}\right) 1$ for $f_{n} \in \mathcal{E}^{\otimes \otimes}$. Then we have

$$
\left\langle x^{\hat{\otimes} n}, f_{n}\right\rangle=\sum_{k=0}^{[n / 2]} \frac{1}{k!}\left(\frac{\Delta_{V}}{2}\right)^{k} \varphi \quad \text { and } \quad \varphi(x)=\sum_{k=0}^{[n / 2]} \frac{1}{k!}\left(-\frac{\Delta_{V}}{2}\right)^{k}\left\langle x^{\hat{\otimes} n}, f_{n}\right\rangle .
$$

§ 13. Expressions of Δ_{V} by coordinates. Let $\left\{\zeta_{k}\right\}$ be a c.o.n.s. of $E_{0}=L^{2}(T, \nu)$. Then for $\zeta \in \mathcal{E}$,

$$
\begin{equation*}
\xi=\sum_{k}^{\infty}\left\langle\zeta_{k}, \xi\right\rangle \zeta_{k} \tag{13.1}
\end{equation*}
$$

converges in E_{0} and hence also in \mathcal{E}^{*}. Since $U(\xi) \in \mathscr{F}$ can be extended to a continuous functional on \mathcal{E}^{*} as seen in $\S 7$, we can define a function $U\left(\xi^{1}, \cdots, \xi^{k}, \cdots\right) \equiv U(\xi)$ for ($\xi^{1}, \cdots, \xi^{k}, \cdots$) with $\xi=\sum \xi^{k} \zeta_{k} \in \mathcal{E}^{*}$. By Theorem 3.3, $U^{(2)}\left(\xi ; \zeta_{1}, \zeta_{2}\right)$ can be extended to a continuous linear functional on $\mathcal{E}^{* \hat{\otimes ि}_{2}}$. Then we get

$$
\begin{equation*}
U^{(2)}\left(\xi ; \zeta_{i}, \zeta_{j}\right)=\frac{\partial}{\partial \xi^{i}} \frac{\partial}{\partial \xi^{j}} U\left(\xi^{1}, \cdots, \xi^{i}, \cdots, \xi^{j}, \cdots\right) . \tag{13.2}
\end{equation*}
$$

Theorem 13.1. For $U(\xi) \in \mathscr{F}$ and for any c.o.n.s. of E_{0}, it holds that for $\xi=\sum \xi^{k} \zeta_{k}$

$$
\tilde{\Delta}_{V} U(\xi)=\sum_{k=1}^{\infty} U^{(2)}\left(\xi ; \zeta_{k}, \zeta_{k}\right) .
$$

We now suppose the following assumption:
(S) There exists a c.o.n.s. $\left\{\zeta_{k}\right\}$ of E_{0} which is also a c.o.g.s. of E_{p} for every p.

Then a sequence of projections $\Pi_{N}, N \geq 1$, is defined by

$$
\begin{equation*}
\Pi_{N} x=\sum_{k=1}^{N}\left\langle x, \zeta_{k}\right\rangle \zeta_{k} \tag{13.3}
\end{equation*}
$$

for $x \in \mathcal{E}^{*}$, since $\left\{\zeta_{k}\right\}$ is included in \mathcal{E}.
Remark 13.2. For f_{n} in $E_{p}^{\hat{\otimes} n}, \Pi_{N}^{\hat{\otimes} n} f_{n}$ is in $E_{p}^{\hat{\otimes} n}$ and converges to f_{n} in $E_{p}^{\hat{\otimes} n}$ as $N \rightarrow \infty$.

Theorem 13.3. Assume Assumption (S). Then for $\varphi(x) \in \mathscr{A}$ and $\tau>0$, the following hold;
(i) $\varphi\left(\Pi_{N} x\right) \rightarrow \varphi(x)$ in \mathscr{G} and pointwisely for $x \in \mathcal{E}^{*}$,
(ii) $\Delta_{V} \varphi(x)=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \frac{\partial}{\partial X^{k}} \frac{\partial}{\partial X^{k}} \varphi\left(\sum_{k=1}^{N} X^{k} \zeta_{k}\right)$, for $x=\sum_{k=1}^{\infty} X^{k} \zeta_{k}$,
(iii) $\exp \left[\tau \Delta_{V} / 2\right] \varphi(x)$

$$
=\lim _{N \rightarrow \infty}(2 \pi \tau)^{-N / 2} \int_{R^{N}} \exp \left[\frac{-1}{2 \tau} \sum_{k=1}^{N}\left(X^{k}-a^{k}\right)^{2}\right] \varphi\left(\sum_{k=1}^{N} a^{k} \zeta_{k}\right) d a^{1} \cdots d a^{N} .
$$

The corresponding assertions are true for the space \mathscr{F}.
Now let us introduce a class of entire functions for $m>0$ by
(13.11) $\mathcal{A}_{m}^{R e} \equiv\left\{h(z)=\sum_{n=0}^{\infty} a_{n} z^{n} ; a_{n}\right.$'s are reals and $\left.\lim _{n \rightarrow \infty}(n!)^{m}\left|a_{n}\right|^{2}=0\right\}$.

Theorem 13.4. Suppose that $f_{n} \in \mathcal{E}^{\hat{\otimes} n}, h(z) \in \mathcal{A}_{m}^{R e}$ and $\varphi(x)$ is either $\left\langle x^{\hat{\otimes} n}, f_{n}\right\rangle$ or $A^{*}\left(f_{n}\right) 1$. Then we have
(i) $h(\varphi(x))$ belongs to \mathcal{H},
(ii) $\quad \Delta_{V} h(\varphi(x))=h^{\prime}(\varphi(x)) \Delta_{V} \varphi(x)+h^{\prime \prime}(\varphi(x)) \int_{T} d \nu(t)\left(\partial_{t} \varphi\right)^{2}$,
(iii) $\exp \left[-\Delta_{V} / 2\right] h\left(\left\langle x^{\hat{ष}^{n}}, f_{n}\right\rangle\right) \xrightarrow{S} h\left(\left\langle\xi^{\hat{ष}^{n}}, f_{n}\right\rangle\right)$.

Example 13.5. For $h \in \mathcal{A}_{1}^{R e}$ and $\tau>0$, we obtain

$$
\begin{aligned}
& \exp \left[\tau \Delta_{V} / 2\right] h(\langle x, \eta\rangle) \\
& \quad=\left(2 \pi \tau\|\eta\|_{0}^{2}\right)^{-1 / 2} \int h(z) \exp \left[\frac{-1}{2 \tau\|\eta\|_{0}^{2}}(\langle x, \eta\rangle-z)^{2}\right] d z .
\end{aligned}
$$

Example 13.6. The function $\exp [z]$ does not belong to $\mathcal{A}_{1}^{R e}$, but we can have the following. For $f_{2} \in \mathcal{E}^{\otimes^{2} 2}$, we can find a c.o.n.s. $\left\{\eta_{k}\right\}$ such that $f_{2}=\sum \rho_{k} \eta_{k} \hat{\otimes} \eta_{k}, \sum\left|\rho_{k}\right|<\infty$. If $|\tau|$ is so small as
(13.12)

$$
4(1+|\tau|\|\delta\|)\left\|f_{2}\right\|_{E_{D}^{\otimes_{2}}}<1
$$

then for $\zeta \in \mathcal{E}$,
(13.13)

$$
\begin{aligned}
& \exp \left[\tau \Delta_{V} / 2\right] \exp \left[-\left\langle x^{\hat{\otimes}^{2}}, f_{2}\right\rangle / 2+\langle x, \zeta\rangle\right] \\
& \quad=\prod_{k}\left(1+\tau \rho_{k}\right)^{-1} \exp \left[\frac { 1 } { 1 + \tau \rho _ { k } } \left\{-\frac{\rho_{k}}{2}\left\langle x, \eta_{k}\right\rangle^{2}+\left\langle x, \eta_{k}\right\rangle\left\langle\eta_{k}, \zeta\right\rangle\right.\right. \\
& \left.\left.+\frac{\tau}{2}\left\langle\eta_{k}, \zeta\right\rangle^{2}\right\}\right]
\end{aligned}
$$

holds in $\mathscr{H}^{(p)}$.

References

[1] Hida, T.: Analysis of Brownian functionals. Carleton Math. Lect. Notes, no. 13 (second ed.) (1978).
[2] -: Brownian motion. Applications of Math., vol. 11, Springer Verlag (1980).
[11] Kubo, I., and Takenaka, S.: Calculus on Gaussian white noise. I. Proc. Japan Acad., 56A, 376-380 (1980).
[12] -: ditto. II. ibid., 56A, 411-416 (1980).
[16] --: ditto. III. ibid., 57A, 433-437 (1981).
[17] Lévy, P.: Problèmes concrets d'analyse fonctionelle. Gauthier-Villars (1951).

