52. Calculus on Gaussian White Noise. IV

By Izumi KUBO and Shigeo TAKENAKA Department of Mathematics, Faculty of Sciences, Nagoya University

(Communicated by Kôsaku YOSIDA, M. J. A., May 12, 1982)

In the previous parts of this series [11], [12], [16], we have given a foundation of calculus on Gaussian white noise and shown the relation between our formulation and Hida's one [1], [2]. In this part, we will treat two kinds of infinite dimensional Laplacians Δ_v and Δ_L related to Gaussian white noise. In the following, we will use the same notations and definitions as in §5 of Part II.

§ 12. Laplacians Δ_v and Δ_L . We have defined operators ∂_t , $t \in T$, in Part II. By Theorem 6.1, we can see that an operator

(12.1)
$$\Delta_{\nu} \equiv \int_{T} d\nu(t) \partial_{t} \partial_{t} d\nu(t) = \int_{T} d\nu(t) \partial_{t} \partial_{t$$

is well defined and continuous on \mathcal{H} and that its dual is given by

(12.2)
$$\Delta_{V}^{*} \equiv \int_{T} d\nu(t) \partial_{t}^{*} \partial_{t}^{*}.$$

We call the operator Δ_v Volterra's Laplacian. By (6.1) in Part II, the operator $\tilde{\Delta}_v \equiv S \Delta_v S^{-1}$ on \mathcal{F} is expressed in the form

(12.3)
$$\tilde{\Delta}_{\nu}U(\xi) = \int_{T} d\nu(t) \frac{\delta}{\delta\xi(t)} \frac{\delta}{\delta\xi(t)} U(\xi).$$

Lévy [17] introduced another Laplacian for functionals of a special type as follows,

(12.4)
$$\Delta\left\{\int_{T} f_1(u)\xi(u)^2 d\nu(u) + \int_{T \times T} f_2(u,v)\xi(u)\xi(v)d\nu(u)d\nu(v)\right\}$$
$$\equiv 2 \int_{T} f_1(u)d\nu(u).$$

Motivated by this, Hida has introduced a Lapalacian for generalized Brownian functionals. We will give an extension of his definition.

Lemma 12.1. Let $V(\xi)$ be in \mathfrak{F}^* , then there exists an element $V^{(n)}(\xi; t_1, \dots, t_n) \in \mathcal{C}^{*\hat{\otimes}n}$, such that

 $V^{(n)}(\xi;\eta_1,\cdots,\eta_n) = \langle V^{(n)}(\xi;\cdot),\eta_1 \hat{\otimes} \cdots \hat{\otimes} \eta_n \rangle.$

Take n=2 as a special case. Then $V^{(2)}(\xi; t, s)$ is in $\mathcal{C}^{*\hat{\otimes}^2}$. Suppose that the generalized function $V^{(2)}(\xi; \cdot)$ is a signed measure on T^2 for fixed ξ . Then we can restrict the measure onto the diagonal set $D \equiv \{(t,s) \in T^2; t=s\}$. We define $L \acute{e}vy$'s Laplacian $\tilde{\mathcal{A}}_L V$ as the mass of D with respect to the signed measure denoted by

(12.5)
$$\tilde{\varDelta}_L V(\xi) \equiv \int_D V^{(2)}(\xi ; t, s) d\nu^2(t, s).$$

For a \mathscr{V} in \mathscr{H}^* , $\mathscr{A}_{\mathcal{L}}\mathscr{V}$ is defined by

 $\varDelta_L \Psi \equiv S^{-1} \tilde{\varDelta}_L S \Psi$,

if $\tilde{\mathcal{A}}_L(S\mathcal{V})$ is well defined and it belongs to \mathcal{F}^* . Denote the domain of \mathcal{A}_L by $\mathcal{D}(\mathcal{A}_L)$. The following theorem is obtained by Theorem 6.2 and Remark 4.6.

Theorem 12.2. (i) Δ_{V} is a continuous operator on \mathcal{H} satisfying $\|\Delta_{V}^{k}\varphi\|_{\mathcal{H}^{(p)}} \leq \sqrt{(2k)!} (\|\delta\|\rho^{q})^{2k} (1-\rho^{2q})^{-k+1/2} \|\varphi\|_{\mathcal{H}^{(p+q)}},$

(ii) $\Delta_{\mathbb{V}}^*$ is a one-to-one continuous operator on \mathcal{H}^* satisfying $S(\Delta_{\mathbb{V}}^* \Psi)(\xi) = \|\xi\|_{2}^{2} S\Psi(\xi)$ for $\Psi \in \mathcal{H}^*$,

(iii) if $\nu(T) < \infty$ and if ψ is in $(L^2) = \mathcal{H}^{(0)}$, then $\Delta_V^* \psi$ is in $\mathcal{D}(\Delta_L)$ and satisfies

$$rac{1}{2
u(T)}\!arDelta_{\scriptscriptstyle L}\!arDelta_{\scriptscriptstyle V}^*\psi\!=\!\psi \quad and \quad arDelta_{\scriptscriptstyle L}\psi\!=\!0.$$

By the theorem, we can define a one-parameter group of operators

(12.7)
$$\exp\left[\tau \mathcal{L}_{V}\right] \equiv \sum_{k=0}^{\infty} \frac{\tau^{k}}{k!} \mathcal{L}_{V}^{k}$$

Actually we have

(12.8) $\|\exp [\tau \mathcal{A}_r]\varphi\|_{\mathcal{H}^{(p)}} \leq 2(1-\rho^{2q}) \|\varphi\|_{\mathcal{H}^{(p+q)}}$ for sufficiently large q as $2(1+2|\tau| \|\delta\|^2)\rho^{2q} < 1$.

Theorem 12.3. (i) $\{\exp[\tau \Delta_v]; \tau \in R\}$ is a one-parameter group of continuous operators on \mathcal{H} ,

(ii) for $\varphi \in \mathcal{H}$, exp $[\tau \Delta_{V}]\varphi$ is analytic in $\tau \in R$.

Proposition 12.4. We have the following formulae;

- (i) $\Delta_{V} \exp [\langle x, \eta \rangle] = \|\eta\|_{0}^{2} \exp [\langle x, \eta \rangle],$ $\exp [\tau \Delta_{V}] \exp [\langle x, \eta \rangle] = \exp [\langle x, \eta \rangle + \tau \|\eta\|_{0}^{2}],$
- (ii) $\Delta_{\nu}H_{n}(\langle x,\eta\rangle; \|\eta\|_{0}^{2}) = n(n-1) \|\eta\|_{0}^{2}H_{n-2}(\langle x,\eta\rangle; \|\eta\|_{0}^{2}),$ $\exp [\tau \Delta_{\nu}]H_{n}(\langle x,\eta\rangle; \|\eta\|_{0}^{2}) = H_{n}(\langle x,\eta\rangle; (1-2\tau) \|\eta\|_{0}^{2}),$
- (iii) $\Delta_{V}\langle x,\eta\rangle^{n} = n(n-1)\langle x,\eta\rangle^{n-2},$ $\exp [\tau \Delta_{V}]\langle x,\eta\rangle^{n} = H_{n}(\langle x,\eta\rangle; -2\tau ||\eta||_{0}^{2}),$
- (iv) $\exp\left[-\Delta_{V}/2\right]\langle x,\eta\rangle^{n} = H_{n}(\langle x,\eta\rangle; ||\eta||_{0}^{2}).$

Theorem 12.5. (i) Let φ be in \mathcal{H} . Then $(S\varphi)(\xi)$ can be extended to a continuous functional $(S\varphi)(x)$ on \mathcal{H}^* , which satisfies

$$\exp\left[\varDelta_{V}/2\right]\varphi(x) = (\mathcal{S}\varphi)(x),$$

and hence $\varphi(x)$ has a continuous version $\mathcal{S}(\exp[-\mathcal{A}_{V}/2]\varphi)(x)$.

(ii) Let U be in \mathcal{F} . Then the continuous extension U(x) of U on \mathcal{E}^* belongs to \mathcal{H} and satisfies

 $(\exp\left[-\varDelta_{V}/2\right]U(x)) \cdot = : U(x) \cdot : and \quad \mathcal{S}(\exp\left[-\varDelta_{V}/2\right]U)(\xi) = U(\xi).$

Remark 12.6. By the theorem, we can think of that \mathcal{H} is a family of continuous functionals on \mathcal{C}^* . In this sense, \mathcal{F} coincides with the set of all restrictions of elements of \mathcal{H} to \mathcal{E} . We have that for $\varphi(x) \in \mathcal{H}$,

(12.9) $(\partial_t \varphi)|_{\mathcal{E}} = \delta/\delta \xi(t)(\varphi|_{\mathcal{E}}) \text{ and } (\Delta_V \varphi)|_{\mathcal{E}} = \tilde{\Delta}_V(\varphi|_{\mathcal{E}}),$

(12.6)

[Vol. 58(A),

(12.10)
$$\begin{aligned} |\varphi(x+\lambda\delta_t)-\varphi(x)-\lambda\partial_t\varphi(x)| &= o(\lambda). \\ \text{Corollary 12.7.} \quad Put \ \varphi(x) &= A^*(f_n) 1 \ for \ f_n \in \mathcal{C}^{\hat{\otimes}^n}. \quad Then \ we \ have \\ \langle x^{\hat{\otimes}^n}, f_n \rangle &= \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{1}{k!} \left(\frac{\Delta_v}{2}\right)^k \varphi \quad and \quad \varphi(x) &= \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{1}{k!} \left(-\frac{\Delta_v}{2}\right)^k \langle x^{\hat{\otimes}^n}, f_n \rangle. \end{aligned}$$

§13. Expressions of Δ_v by coordinates. Let $\{\zeta_k\}$ be a c.o.n.s. of $E_0 = L^2(T, \nu)$. Then for $\zeta \in \mathcal{C}$,

(13.1)
$$\xi = \sum_{k}^{\infty} \langle \zeta_{k}, \xi \rangle \zeta_{k}$$

converges in E_0 and hence also in \mathcal{E}^* . Since $U(\xi) \in \mathcal{F}$ can be extended to a continuous functional on \mathcal{E}^* as seen in §7, we can define a function $U(\xi^1, \dots, \xi^k, \dots) \equiv U(\xi)$ for $(\xi^1, \dots, \xi^k, \dots)$ with $\xi = \sum \xi^k \zeta_k \in \mathcal{E}^*$. By Theorem 3.3, $U^{(2)}(\xi; \zeta_1, \zeta_2)$ can be extended to a continuous linear functional on $\mathcal{E}^{*\hat{\otimes}^2}$. Then we get

(13.2)
$$U^{(2)}(\xi;\zeta_i,\zeta_j) = \frac{\partial}{\partial \xi^i} \frac{\partial}{\partial \xi^j} U(\xi^1,\cdots,\xi^i,\cdots,\xi^j,\cdots).$$

Theorem 13.1. For $U(\xi) \in \mathcal{F}$ and for any c.o.n.s. of E_0 , it holds that for $\xi = \sum \xi^k \zeta_k$

$$\widetilde{\varDelta}_{\scriptscriptstyle V} U(\xi) = \sum_{k=1}^{\infty} U^{\scriptscriptstyle (2)}(\xi \, ; \, \zeta_k, \zeta_k).$$

We now suppose the following assumption:

(S) There exists a c.o.n.s. $\{\zeta_k\}$ of E_0 which is also a c.o.g.s. of E_p for every p.

Then a sequence of projections Π_N , $N \ge 1$, is defined by

(13.3)
$$\Pi_N x = \sum_{k=1}^N \langle x, \zeta_k \rangle \zeta_k$$

for $x \in \mathcal{C}^*$, since $\{\zeta_k\}$ is included in \mathcal{C} .

Remark 13.2. For f_n in $E_p^{\hat{\otimes} n}$, $\Pi_N^{\hat{\otimes} n} f_n$ is in $E_p^{\hat{\otimes} n}$ and converges to f_n in $E_p^{\hat{\otimes} n}$ as $N \to \infty$.

Theorem 13.3. Assume Assumption (S). Then for $\varphi(x) \in \mathcal{H}$ and $\tau > 0$, the following hold;

(i)
$$\varphi(\Pi_N x) \rightarrow \varphi(x)$$
 in \mathcal{H} and pointwisely for $x \in \mathcal{E}^*$,

(ii)
$$\Delta_{V}\varphi(x) = \lim_{N \to \infty} \sum_{k=1}^{N} \frac{\partial}{\partial X^{k}} \frac{\partial}{\partial X^{k}} \varphi\left(\sum_{k=1}^{N} X^{k} \zeta_{k}\right), \quad for \ x = \sum_{k=1}^{\infty} X^{k} \zeta_{k},$$

(iii)
$$\exp\left[\tau \mathcal{L}_{V}/2\right]\varphi(x) \\ = \lim_{N \to \infty} (2\pi\tau)^{-N/2} \int_{\mathbb{R}^{N}} \exp\left[\frac{-1}{2\tau} \sum_{k=1}^{N} (X^{k} - a^{k})^{2}\right] \varphi\left(\sum_{k=1}^{N} a^{k} \zeta_{k}\right) da^{1} \cdots da^{N}.$$

The corresponding assertions are true for the space \mathcal{F} .

Now let us introduce a class of entire functions for m > 0 by

(13.11)
$$\mathcal{A}_{m}^{Re} \equiv \left\{ h(z) = \sum_{n=0}^{\infty} a_{n} z^{n}; a_{n} \text{'s are reals and } \lim_{n \to \infty} (n!)^{m} |a_{n}|^{2} = 0 \right\}.$$

Theorem 13.4. Suppose that $f_n \in \mathcal{E}^{\otimes n}$, $h(z) \in \mathcal{A}_m^{Re}$ and $\varphi(x)$ is either $\langle x^{\otimes n}, f_n \rangle$ or $A^*(f_n)1$. Then we have

(i) $h(\varphi(x))$ belongs to \mathcal{H} ,

188

(ii)
$$\Delta_{\nu}h(\varphi(x)) = h'(\varphi(x))\Delta_{\nu}\varphi(x) + h''(\varphi(x))\int_{T} d\nu(t)(\partial_{\iota}\varphi)^{2},$$

(iii) $\exp\left[-\Delta_{\nu}/2\right]h(\langle x^{\otimes n}, f_{n}\rangle) \xrightarrow{S} h(\langle \xi^{\otimes n}, f_{n}\rangle).$
Example 13.5. For $h \in \mathcal{A}_{1}^{Re}$ and $\tau > 0$, we obtain
 $\exp\left[\tau\Delta_{\nu}/2\right]h(\langle x, \eta\rangle)$
 $= (2\pi\tau ||\eta||_{0}^{2})^{-1/2}\int h(z) \exp\left[\frac{-1}{2\tau ||\eta||_{0}^{2}}(\langle x, \eta\rangle - z)^{2}\right]dz$

Example 13.6. The function exp [z] does not belong to \mathcal{A}_1^{Re} , but we can have the following. For $f_2 \in \mathcal{E}^{\hat{\otimes} 2}$, we can find a c.o.n.s. $\{\eta_k\}$ such that $f_2 = \sum \rho_k \eta_k \hat{\otimes} \eta_k$, $\sum |\rho_k| < \infty$. If $|\tau|$ is so small as $4(1+|\tau| \|\delta\|) \|f_2\|_{E^{\otimes 2}_{\infty}} < 1,$ (13.12)then for $\zeta \in \mathcal{E}$, $\exp\left[au \mathcal{A}_{_{V}}/2
ight] \exp\left[-\langle x^{\hat{\otimes}_{2}},f_{_{2}}
angle/2\!+\!\langle x,\zeta
angle
ight]$ (13.13) $=\prod_k (1+ au
ho_k)^{-1} \expigg[rac{1}{1+ au
ho_k}\Big\{-rac{
ho_k}{2}\langle x,\eta_k
angle^2+\langle x,\eta_k
angle\langle\eta_k,\zeta
angle$ $+\frac{\tau}{2}\langle\eta_k,\zeta\rangle^2\Big\}\Big]$

holds in $\mathcal{H}^{(p)}$.

References

- [1] Hida, T.: Analysis of Brownian functionals. Carleton Math. Lect. Notes, no. 13 (second ed.) (1978).
- [2] ----: Brownian motion. Applications of Math., vol. 11, Springer Verlag (1980).
- [11] Kubo, I., and Takenaka, S.: Calculus on Gaussian white noise. I. Proc. Japan Acad., 56A, 376-380 (1980).
- [12] ——: ditto. II. ibid., **56**A, 411–416 (1980). [16] ——: ditto. III. ibid., **57**A, 433–437 (1981).
- [17] Lévy, P.: Problèmes concrets d'analyse fonctionelle. Gauthier-Villars (1951).

No. 5]