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52. Calculus on Gaussian White Noise. IV
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In the previous parts of this series [11], [12], [16], we have given
a foundation of calculus on Gaussian white noise and shown the rela-
tion between our formulation and Hida’s one [1], [2]. In this part,
we will treat two kinds of infinite dimensional Laplacians A, and
related to Gaussian white noise. In the following, we will use the
same notations and definitions as in 5 of Part II.

12. Laplacians z/ and z/. We have defined operators 3, t e T,
in Part II. By Theorem 6.1, we can see that an operator

(12.1) A=T
is well defined and continuous on . and that its dual is given by

(12.2) A*=_r d,(t)O* O*
We call the operator z/ Volterra’s Laplacian. By (6.1)in Part II, the
operator ]----z/3- on is expressed in the form

U().(12.3) U()
r
d(t)

(t) (t)
L4vy [17] introduced another Laplacian for functionals of a special

type as follows,

--2 frfi(u)d,(u).
Motivated by this, Hida has introduced a Lapalacian or generalized
Brownian functionals. We will give an extension of his definition.

Lemma 12.1. Let V() be in *, then there exists an element
V()( t, ., t) e C*(R), such that

Take n--2 as a special case. Then V()(; t, s) is in *. Sup-
pose that the generalized function V()( .) is a signed measure on T
or fixed . Then we can restrict the measure onto the diagonal set
D--{(t, s) e T; t-s}. We define Ldvy’s Laplacian ILV as the mass of
D with respect to the signed measure denoted by

(12.5) V()-- V()( t, s)d,(t, s).
dD
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For a in *, / is defined by
(12.6)
if ],.(F) is well defined and it belongs to *. Denote the domain of
A by (A). The following theorem is obtained by Theorem 6.2 and
Remark 4.6.

Theorem 12.2. (i) is a continuous operator on satisfying

I1 I,., Jk) [(11 llp.)="(1-p=.) -"+/= I111,+.,.
(ii) is a one-to-one continuous operaor on * satisfying

(A)() ]]]() for
(iii) if ,(T) and if is in (L)=J[(), then is in ()

and satisfies
1 ..= and =0.2"(T)

By the theorem, we can define a one-parameter group of operators

Actually we hve
(12.8) [[exp [r,] [[,, 2(1-p
2or sufficiently large q as 2(1+2 [r l)p 1.

Theorem 12.. (i) {exp [r];r e R} is a one-parameter group
of continuo operators on

(ii) for e , exp [r] is analytic in r e R.
Proposition 12.4. We have the following formulae;
( i ) exp [(x, }]=[] exp [(x, }],

exp [r] exp [(x, }] =exp [(x, } +r []],
(ii) H((x,}; ]lll])=n(n-1)]l]]]Hn_((x,}; ]]]),

exp [r]H,((x, } ]]l]])=H,((x, } (1-2r)I111),
(iii) Z(x, }"=n(n-1)(x, }-,

exp [r,](x, }"=H,((x,
(iv) exp [-/2](x,}"=H,((x,
Theorem 12.. (i) Let be in . Then ()() can be extended

to a continuous functional ()(x) on *, which satisfies
exp [a/2](x)=()(x),

and hence (x) has a continuous version (exp [-/2])(x).
(ii) Let U be in . Then the continuous extension U(x) of U on

* belongs to and satisfies
(exp [-/2]U(x)). U(x). and 3(exp [-/2]U)()=U().
Remark 12.6. By the theorem, we can think of that

amily of continuous unctionals on C*. In this sense, coincides
with the set o all restrictions of elements of to . We have that
for (x)
(12.9) (at)lv=/(t)([v) and ()=](]),
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(12.10)
Corollary 12.7. Put (x)=A*(f)l for fn e (R). Then we have

(x(R),f}= and (x)=, (xn f}.
=o k k 2 / =o

1. xpressions of A by coordinates. Let {5} be a c.o.n.s, of
E0 L(T, ,). Then for

(13.1)

converges in E0 and hence also in *. Since U() e can be extended
to a continuous functional on * as seen in 7, we can define a func-
tion U(’, ...,$, ...)=U($) for (1, ",$, ...) with ={ eC*.
By Theorem 3.3, U()(; {, {)can be extended to a continuous linear
functional on C*. Then we get

3 U(’ ,... ...)(13.2) U()($; {,{)=
35 3

Theorem 13.1. For U() e and for any c.o.n.s, of Eo, it holds
that for

3"U() E U()( {, {).
k=l

We now suppose the ollowing assumption"
(S) There exists a c.o.n.s. {{}

E for every p.
Then a sequence o projections H, N1, is defined by

N

(13.3) Hx=
k=l

for x e *, since {5} is included in

Remark 1.2. For f in E, Hnfn is in E and converges to
fn in E as N.

Theorem 1.. Assume Assumption (S). Then for (x) e and
0, the following hold

( ) (Hx)(x) in ( and pointwisely for x e *,

)X for x=X(ii) A(x) lim
N k=l X X k=l

(iii) exp [rA/2](x)
=lim(2=r)-n exp --1 (X_a) a{ da. .da"

R 2V k=l

The corresponding assertions are true for the space
Now let us introduce a class of entire functions for m>0 by

(18.11) -- h(z)=;’s are reals and lim
=0

Theorem 1.4. Suppose that f e n, h(z) e and (x) is
either (xn,f} or A*(f)l. Then we have

( ) h((x)) belongs to
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A,h((x)) h’((x))z(x)+ h"((x)) d(t)(3),( ii )

(iii) exp [--zIv/2]h((xn,fn}) 3--h((n, fn}).
Example 1.5. For he and r0, we obtain

exp [rA,/2]h((x, })

f [ --1 ((x,}-z)]dz.(2 )-/ h(z) exp 2r
xample 1.6. The function exp [z] does not belong to, but

we can have the following. For f e, we can find a c.o.n.s. {}
such thatf=p, p]. I ]r] is so small as
(13.12) 4(1+r] ]])f<1,
then or e ,
(13.13) exp [r/2] exp [-(x,f}/2+(x, }]

= (l+rp)-exp
1 2

holds in ().
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