49. Remarks on the Uniqueness in an Inverse Problem for the Heat Equation. II*)

By Takashi SUZUKI Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1982)

For $p \in C^{1}[0, 1]$, $h \in \mathcal{R}$, $H \in \mathcal{R}$ and $a \in L^{2}(0, 1)$, let $(E_{p,h,H,a})$ denote the heat equation

(1)
$$\frac{\partial u}{\partial t} + \left(p(x) - \frac{\partial^2}{\partial x^2}\right)u = 0 \qquad (0 < t < \infty, \ 0 < x < 1),$$

with the boundary condition

(2)
$$\frac{\partial u}{\partial x} - hu|_{x=0} = \frac{\partial u}{\partial x} + Hu|_{x=1} = 0 \quad (0 < t < \infty),$$

and with the initial condition

(3) $u|_{t=0} = a(x)$ (0<x<1).

Let $A_{p,h,H}$ be the realization in $L^2(0,1)$ of the differential operator $p(x) - \partial^2/\partial x^2$ with the boundary condition (2), and let $\{\lambda_n\}_{n=0}^{\infty}$ and $\{\phi_n\}_{n=0}^{\infty}$ be the eigenvalues and the eigenfunctions of $A_{p,h,H}$, respectively, the latter being normalized by $\|\phi_n\|_{L^2(0,1)} = 1$. Noting that each λ_n is simple $(-\infty < \lambda_0 < \lambda_1 < \cdots \rightarrow \infty)$, we call $N \equiv \#\{\lambda_n \mid (a, \phi_n) = 0\}$ the "degenerate number" of $a \in L^2(0, 1)$ with respect to $A_{p,h,H}$, where (,) means the L^2 -inner product.

Henceforth p, h, H and a are given, u=u(t, x) is the solution of $(E_{p,h,H,a})$ and N is the degenerate number of a with respect to $A_{p,h,H}$. Take T_1, T_2 in $0 \leq T_1 < T_2 < \infty$ and set

holds for the solution v = v(t, x) of the equation $(E_{q,j,J,b})$. Clearly $(p, h, H, a) \in \mathcal{M}^0$. In the previous work [7], the author showed Theorem 0. (i) In the case of $x_0 = 1$.

(5')
$$\mathcal{M}^0 = \{(p, h, H, a)\}$$

if and only if N=0.

(ii) In the case of $1/2 < x_0 < 1$, (5') holds whenever $N < \infty$.

(iii) In the case of $x_0 = 1/2$, (5') holds if and only if $N \leq 1$.

(iv) In the case of $0 < x_0 < 1/2$, we always have $\mathcal{M}^0 \supseteq \{(p, h, H, a)\}$.

In the present paper, we consider

 $\mathscr{M}^{1} = \mathscr{M}^{1}_{p,h,H,a,x_{0}} \equiv \{(q, j, J, b) \in C^{1}[0, 1] \times \mathscr{R} \times \mathscr{R} \times L^{2}(0, 1) |$

⁹ This work was supported partly by the Fûju-kai.

[Vol. 58(A),

(4) $v(t, x_0) = u(t, x_0), \quad v_x(t, x_0) = u_x(t, x_0) \quad (T_1 \leq t \leq T_2)$ holds for the solution v = v(t, x) of the equation $(E_{q, j, J, b})$, and study when

(5) $\mathcal{M}^1 = \{(p, h, H, a)\}$ is satisfied. We note that (5) holds only if $x_0 = 1/2$ and $N \leq 1$ by Theorem 0.

Our results are the following

Theorem 1. (5) holds true if $x_0 = 1/2$ and N = 0.

Theorem 2. Let $x_0 \neq 1/2$ and assume $1/2 < x_0 < 1$ without loss of generality. Then, (4) implies J = H and q(x) = p(x) ($x_0 \leq x \leq 1$), whenever $N < \infty$.

Theorem 3. Under the same situation as in Theorem 2, we have (6) $\mathcal{M}_{p,h,H,a,x_0}^1 \cap \{(q, j, J, b) \in C^1[0, 1] \times \mathcal{R} \times \mathcal{R} \times L^2(0, 1)|$

$$q(x) = p(x) \qquad (1/2 \le x \le x_0) = \{(p, h, H, a)\},\$$

if and only if $N \leq 1$.

In view of Theorems 1-3, we call $(x_0, 1)$ the "domain of uniqueness" in the case of $1/2 < x_0 < 1$, which turns out to be $(0, x_0)$ in the case of $0 < x_0 < 1/2$. The proof of Theorems 1-3 is based on

Lemma 1. Put $D_1 = \{(x, y) | 1/2 \le x \le 1, 1-x \le y \le x\}$. Then for each $p \in C^1[0, 1]$ and $q \in C^1[1/2, 1]$, there exists a unique $K \in C^2(\overline{D}_1)$ such that

(7.a)
$$K_{xx} - K_{yy} + p(y)K = q(x)K \qquad ((x, y) \in \overline{D}_1)$$

(7.b)
$$K(x, x) = 1/2 \int_{1/2}^{x} (q(s) - p(s)) ds$$
 $(1/2 \le x \le 1)$

(7.c)
$$K(x, 1-x) = 0$$
 $(1/2 \le x \le 1)$

Lemma 2. Let $\Phi = \Phi(x) \in C^2[0, 1]$ satisfy (8) $(p(x) - d^2/dx^2)\Phi = \lambda \Phi$ $(0 \le x \le 1)$

for some $\lambda \in \mathcal{R}$. Then

(9)
$$\Psi(x) = \Phi(x) + \int_{1-x}^{x} K(x, y) \Phi(y) dy$$
 $(1/2 \le x \le 1)$

satisfies

(10)
$$\Psi(1/2) = \Phi(1/2), \quad \Psi'(1/2) = \Phi'(1/2), \quad (q(x) - d^2/dx^2)\Psi = \lambda \Psi'(1/2) \leq x \leq 1).$$

The proof will be given in a forthcoming paper along with a detailed proof of Theorem 0. For other references on the inverse problems for the heat equation, see Suzuki [5]. See also Seidman [3], Pierce [2], Suzuki-Murayama [8], Murayama [1] and Suzuki [4], [6].

References

- Murayama, R.: The Gel'fand-Levitan theory and certain inverse problems for the parabolic equation. J. Fac. Sci. Univ. Tokyo, 28, 317-330 (1981).
- [2] Pierce, A.: Unique identification of eigenvalues and coefficients in a parabolic problem. SIAM J. Control & Optimization, 17, 494-499 (1979).

176

- [3] Seidman, T. I.: Ill-posed problems arising in boundary control and observation for diffusion equations. Inverse and Improperly Posed Problems in Differential Equations (ed. by G. Anger), pp. 233-247, Akademie Verlag (1979).
- [4] Suzuki, T.: Uniqueness and nonuniqueness in an inverse problem for the parabolic equation (to appear in J. Diff. Eq.).
- [5] ——: Inverse problems for the heat equation. Sûgaku, 34, 55-64 (1982) (in Japanese).
- [6] ——: Uniqueness and nonuniqueness in an inverse problem for the parabolic equations (to appear in Proc. Fifth Intern. Symp. on Computing Methods in Engineering and Applied Sciences).
- [7] ——: Remarks on the uniqueness in an inverse problem for the heat equation. I. Proc. Japan Acad., 58A, 93-96 (1982).
- [8] Suzuki, T., and Murayama, R.: A uniqueness theorem in an identification problem for coefficients of parabolic equations. ibid., 56A, 259-263 (1980).