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2.Dimensional Periodic Continued Fractions and
3.Dimensional Cusp Singularities
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2-dimensional cusp singularities are in one-to-one correspondence
with periodic continued fractions, which may be interpreted as cycles
of integers. We regard a cycle of integers, as a triangulation of a
circle on each vertex of which an integer is attached. Then as a
generalization of a periodic continued fraction to dimension 2, we
consider a triangulation of a compact topological surface on each edge
of which a pair of integers is attached. We show that if it satisfies
some conditions, then it induces a 3-dimensional cusp singularity in a
manner similar to the 2-dimensional case. Then the singularity has
a resolution whose exceptional set is completely determined by the
given triangulation realized as the "dual graph". The cusp singu-
larities thus obtained have a duality among themselves generalizing
that of Nakamura [2]. In the special case of real tori, we get Hilbert
modular cusp singularities.

The details will appear elsewhere.
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Results. Let N:Z and N=N(R)zR_R. Let " N\(O}-.S-be the natural projection onto a sphere Sn-1--(NR\{O})/R>o Then

Aut (N)--GL(N) acts on Sn- through . Let be the set of the pairs
(C,/) of a cone C in N and a subgroup/ of GL(N) satisfying the
following conditions" C is open, nondegenerate (i.e., C (-C)={O}),
convex and /-invariant. Moreover, the induced action of / on D
(C)- C/R>0 is properly discontinuous and fixed point free with the

compact quotient D//.
Let T N(R)z C* (C*) and let ord log I" T-N=T/CT

be the canonical map, where CT is the compact real torus N(R)z U(1)
V(1) n. Using the theory of torus embeddings [2] we can show the

following"
Theorem 1. If (C, I) is in , then we have an n-dimensional cusp

singularity (V, p)= Cusp (C, I) such that V\{p}ord-1 (C)/I.
Let ff-{Cusp (C,/)I(C,/) e }. We have a duality in ff in the

following way" Let C* be the dual cone of C in the dual vector space
M-N of N. Then/ also acts on M and C* canonically and (C*,/)
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is in . We call Cusp (C*, F) the dual singularity of Cusp (C, F).
The well-known Hilbert modular cusp singularities are contained

in . For a totally real algebraic number field K of degree n over
Q, C is the totally positive orthant in R(R) K and F in a group of totally
positive units of rank n--1. D/F in this case is an (n-1)-dimensional
real torus.

Next, we explain how to construct (C, F) in 2 systematically when
n--3, generalizing the notion of periodic continued ractions or n-2.
In the ollowing, we use the notations of Oda [2]. Let T be a compact
topological surface, let T--T be its universal covering space and let
F-=(T), the undamental group of T. Let A be a F-invariant trian-
gulation of T.

Definition 2. A F-invariant double Z-weighting of z/ satisfying
the monodromy condition at the vertices is a pair o integers attached
to each edge of z/with one integer on the side of one vertex and with
the other integer on the side of the other vertex satisfying the follow-
ing conditions" (i) These integers are F-invariantly attached. (ii)
For each vertex v of /, let v, v, ..., v, be the vertices of its link going
around v in this order. Let (n, n, n} be an arbitrary Z-basis of N.
Then we can determine n, ..., n and n,/ in N by the equality (*) n_-n +an-bn 0, where (a, b) is the given pair of integers on the
edge joining v and v with a (resp, b) on the side of v (resp. v).
Then we require that n/-n and that their images =(n), u(n0, ..,
=(n,) in the sphere S go around u(n) exactly once in this order.

Let z/ be a F-invariant triangulation of T, endowed with a F-
invariant double Z-weighting satisfying the monodromy condition at
the vertices. Choose and fix a Z-basis (n, n’, n"} and a triangle of A
with vertices (v, v’, v"}. Then, since T is simply connected, we get
the N-weighting map a" (all vertices of A}-.N which sends v, v’, v" to
n, n’, n", respectively, and which sends other vertices to the elements
of N determined by the equality (*) above. Moreover, we have a uni-
que homomorphism p’F-+GL(N) satisfying p().a(v)-a(7.v) or any
element - of F and any vertex v of A. We easily obtain a F-equivariant
local homeomorphism f" T-.S, extending the map .a such that the
image of each triangle of /is a spherical triangle.

Theorem :. Assume that the following condition (**) is satisfied"
(**) f is in]ective, f() is spherically convex and its closure f()

is contained in a hemisphere of S.
Then (C, p(F)) is in , where C=z-(f(T)).
By this theorem, we have a cusp singularity Cusp (C, p(F)). Then

it has a resolution whose exceptional set consists of rational surfaces
crossing each other along rational curves and points in such a way
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that the "dual graph" agrees with the given triangulation . We
have the following sufficient condition, under which (**) is satisfied.

Theorem 4. Let be a I-invariant triangulation of the universal
covering space T of a compact topological surface T, endowed with a
I-invariant double Z-weighting satisfying the monodromy condition
at the vertices, where I--I(T) is the fundamental group of T. Then
the map f" T--S induced by zl, as above, satisfies the condition (**)
of Theorem 3, if the following two conditions are satisfied" (i) The
sum of the double Z-weights on each edge of zi is not greater than -2.
(ii) We get a cell division of T by deleting all the edges of z which
have the sum of the double Z-weights equal to -2.

An example. Let zl be an octahedral triangulation of a 2-sphere
S. Take a double covering T of S ramifying at all six vertices of zl,
and let zt2 be the triangulation of T induced by zl. Then T is a com-
pact orientable surface of genus 2. Let zl be the triangulation of the
universal covering space T of T induced by zl, and let I-(T). We
have a/-invariant double Z-weighting of 1 satisfying the monodromy
condition at the vertices if we attach integers on each triangle of zl,
as in Fig. 1. Clearly, it satisfies the conditions of Theorem 4.

Fig. 1
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