69. On ^Ξ-Product of Spaces which have a σ-Almost Locally Finite Base

By Munehiko Itō

Institute of Mathematics, University of Tsukuba

(Communicated by Kôsaku YOSIDA, M. J. A., June 15, 1982)

1. Introduction. Let $\{X_a : a \in A\}$ be a family of topological spaces. By $B_a X_a$ we denote the set $\prod_a X_a$ with the box product topology. For $p \in B_a X_a$ we denote the subspace $\{x \in B_a X_a : x_a \neq p_a \text{ for at most finitely many } a\}$ of $B_a X_a$ by \mathcal{Z}_p .

Recently K. Tamano and the author [3] introduced the notion of almost local finiteness and the class of all spaces which have a σ -almost locally finite base. This class is an intermediate class between that of free L-spaces and that of M_1 -spaces. The purpose of this paper is to prove that \mathcal{Z}_p has a σ -almost locally finite base if each X_a has a σ almost locally finite base and $p \in B_a X_a$. Corollary 3.2 is an improvement on the result of S. San-ou [5]. By [4], \mathcal{Z}_p need not be free L even if each X_a is metrizable and $p \in B_a X_a$. For another results on \mathcal{Z} -product see [1], [2] and [5].

In this paper all spaces are assumed to be regular T_1 .

2. Preliminaries. Definition 2.1. Let X be a space and \mathcal{A} a family of subsets of X. \mathcal{A} is said to be *almost locally finite* in X if for every point x of X there exist a neighborhood U of x and a finite family \mathcal{B} of subsets of X such that

 $\{A \cap U : A \in \mathcal{A}\} \subset \{B \cap W : B \in \mathcal{B} \text{ and } W \text{ is a neighborhood of } x\}.$

Lemma 2.2. Let $\{X_e : e \in E\}$ be a family of spaces and $p \in B_e X_e$. For each $e \in E$ let \mathcal{A}_e be an almost locally finite family of open sets of X_e such that

if
$$V \in \mathcal{A}_e$$
 then $p_e \in V$ or $p_e \in \operatorname{Cl} V$.

Then $\{\Xi_p \cap \prod_e V_e : (V_e)_{e \in E} \in \prod_e \mathcal{A}_e\}$ is almost locally finite in Ξ_p .

Proof. Let $x \in \mathcal{Z}_p$.

Case 1. x=p.

For each $e \in E$ put $U_e = X_e - \bigcup \{\operatorname{Cl} V : V \in \mathcal{A}_e, p_e \in \operatorname{Cl} V\}$. Put $U = Z_p \cap \prod_e U_e$. Then U is a neighborhood of x. Let $(V_e)_{e \in E} \in \prod_e \mathcal{A}_e$ and $U \cap \prod_e V_e \neq \emptyset$. Then $x_e = p_e \in V_e$, $e \in E$. Therefore $U \cap \prod_e V_e$ is a neighborhood of x.

Case 2. $x \neq p$.

Let $E_1 = \{e \in E : x_e = p_e\}$ and $E_2 = E - E_1$. Then $|E_2| < \aleph_0$. For $e \in E_1$ put $U_e = X_e - \bigcup \{\operatorname{Cl} V : V \in \mathcal{A}_e, p_e \in \operatorname{Cl} V\}$. For $e \in E_2$ there exist

No. 6]

a neighborhood U_e of x_e and a finite family \mathcal{B}_e of subsets of X_e such that

 $\{V \cap U_e : V \in \mathcal{A}_e\} \subset \{B \cap W : B \in \mathcal{B}_e, W \text{ is a neighborhood of } x_e\}.$ Put $U = \mathcal{Z}_p \cap \prod_e U_e$ and

 $\mathcal{B} = \{ \mathcal{B}_p \cap (\prod_{e \in E_2} B_e \times \prod_{e \in E_1} X_e) : (B_e)_{e \in E_2} \in \prod_{e \in E_2} \mathcal{B}_e \}.$ Then U is a neighborhood of x and \mathcal{B} is a finite family of subsets of \mathcal{B}_p . Let $(V_e)_{e \in E} \in \prod_e \mathcal{A}_e$ and $U \cap \prod_e V_e \neq \emptyset$. Then $x_e \in V_e$, $e \in E_1$. For $e \in E_2$ there exist $B_e \in \mathcal{B}_e$ and a neighborhood W_e of x_e such that $V_e \cap U_e = B_e \cap W_e$. Then

 $U \cap \prod_{e} V_{e} = \mathcal{Z}_{p} \cap (\prod_{e \in E_{1}} (U_{e} \cap V_{e}) \times \prod_{e \in E_{2}} W_{e}) \cap (\prod_{e \in E_{1}} X_{e} \times \prod_{e \in E_{2}} B_{e});$ $\mathcal{Z}_{p} \cap (\prod_{e \in E_{1}} (U_{e} \cap V_{e}) \times \prod_{e \in E_{2}} W_{e}) \text{ is a neighborhood of } x; \text{ and}$ $\mathcal{Z}_{p} \cap (\prod_{e \in E_{1}} X_{e} \times \prod_{e \in E_{2}} B_{e}) \in \mathcal{B}.$

Therefore $\{Z_p \cap \prod_e V_e : (V_e)_{e \in E} \in \prod_e \mathcal{A}_e\}$ is almost locally finite in Z_p .

3. The theorem. Theorem 3.1. Let $\{X_e : e \in E\}$ be a family of spaces which have a σ -almost locally finite base and $p \in B_e X_e$. Then Ξ_p has a σ -almost locally finite base.

Proof. Obviously \mathbb{Z}_p is regular T_1 . For each $e \in E$ let $\bigcup \{ \mathcal{B}_n^e : n \in N \}$ be a σ -almost locally finite base of X_e such that

$$\mathscr{B}_n^e$$
 is almost locally finite, $n \in N$; and

$$\mathscr{B}_{n}^{e} \subset \mathscr{B}_{n+1}^{e}, n \in \mathbb{N}.$$

By Theorem 3.4 of [3], p_e has an almost locally finite open neighborhood base $\mathcal{O}(p_e)$, $e \in E$. For each $e \in E$, take a family $\{G_n^e : n \in N\}$ of open sets of X_e such that

$$\operatorname{Cl} G_n^e \subset G_{n+1}^e, n \in N; ext{ and } X_e - \{p_e\} = \cup \{G_n^e : n \in N\}.$$

Put $\mathcal{O}_n^e = \mathcal{O}(p_e) \cup \{V \cap G_n^e : V \in \mathcal{B}_n^e\}$, then by Propositions 2.6 and 2.8 of [3], \mathcal{O}_n^e is almost locally finite and satisfies the condition of Lemma 2.2. Let

$$\mathcal{B}_n = \{ \mathcal{Z}_p \cap \prod_e V_e : (V_e)_{e \in E} \in \prod_e \mathcal{O}_n^e \}, \qquad n \in N.$$

Then by Lemma 2.2, each \mathcal{B}_n is almost locally finite. It is easy to show that $\cup \{\mathcal{B}_n : n \in N\}$ is a base of \mathcal{Z}_p . Thus the proof is completed.

Corollary 3.2. Let $\{X_e : e \in E\}$ be a family of metric spaces, $p \in B_e X_e$ and $X \subset \mathbb{F}_p$. Then

(1) $X \text{ is an } M_1\text{-space}; and$

(2) every closed image of X is an M_1 -space.

Proof. These follow from Theorem 3.1 and Theorems 3.2, 3.3 and 3.6 of [3].

References

- [1] C. R. Borges: Direct sums of stratifiable spaces. Fund. Math., 100, 97-99 (1978).
- [2] E. K. van Douwen: The box product of countably many metrizable spaces need not be normal. ibid., 88, 127-132 (1975).

M. Itō

- [3] M. Itō and K. Tamano: Spaces whose closed images are M_1 (to appear in Proc. Amer. Math. Soc.).
- [4] K. Nagami and K. Tsuda: Complexes and L-structures. J. Math. Soc. Japan, 33, 639-648 (1981).
- [5] S. San-ou: A note on *E*-product. ibid., 29, 281–285 (1977).