66. On the Microlocal Structure of a Regular Prehomogeneous Vector Space Associated with Spin(10) \times GL(3)

By Tatsuo Kimura*) and Ikuzo Ozeki**)
(Communicated by Kôsaku Yosida, m. J. A., June 15, 1982)

Let ρ_{1} be the even half-spin representation of the spin group Spin (10). Its representation space $V(16)$ is spanned by $1, e_{i} e_{j}, e_{k} e_{l} e_{s} e_{t}(1 \leqq i$ $<j \leqq 5,1 \leqq k<l<s<t \leqq 5$) over C. Define e_{i}^{*} by $e_{i} e_{i}^{*}=e_{1} e_{2} e_{3} e_{4} e_{5}$, i.e., $e_{1}^{*}=e_{2} e_{3} e_{4} e_{5}, e_{2}^{*}=-e_{1} e_{3} e_{4} e_{5}$, etc. Let $\rho=\rho_{1} \otimes \Lambda_{1}$ be the representation of the group $G=\operatorname{Spin}(10) \times G L(3)$ on $V=V(16) \otimes V(3)$ where Λ_{1} denotes the standard representation of $G L(3)$ on $V(3)$. Then the triplet (G, ρ, V) is an irreducible regular prehomogeneous vector space ([1]). There exists a unique relatively invariant irreducible polynomial $f(x)$ of (G, ρ, V) with deg $f(x)=12$. In this article, we give the orbital decomposition of (G, ρ, V) and the b-function $b(s)$ of the relative invariant $f(x)$ by constructing the holonomy diagram (see [2], [3]). All other irreducible regular P.V.'s have been already treated in [2]-[6].
§ 1. The orbits. Let ρ^{*} be the contragredient representation of ρ on the dual space V^{*} of V. We identify the cotangent bundle $T^{*} V$ with $V \times V^{*}$. Let $S\left(\right.$ resp. $\left.S^{*}\right)$ be a G-orbit in $V\left(r e s p . V^{*}\right), \Lambda\left(r e s p . \Lambda^{*}\right)$ the Zariski-closure of the conormal bundle of S (resp. S^{*}). Then Λ and Λ^{*} are subsets of $V \times V^{*}$. If $\Lambda=\Lambda^{*}$, we say that S and S^{*} are dual orbits of each other. Let W be the Zariski-closure of $\{(x, s$ grad $\left.\log f(x)) \in V \times V^{*} ; f(x) \neq 0, s \in \boldsymbol{C}\right\}$ in $V \times V^{*}$. It is known that if Λ has a Zariski-dense G-orbit, i.e., G-prehomogeneous, and $\Lambda \subset W$, then the micro-differential equations $\mathfrak{M}=\mathcal{E} f^{s}$ is a simple holonomic system near a generic point of Λ, and its order $\operatorname{ord}_{4} f^{s}$ is uniquely determined (see [2]). Since G is reductive, we have (G, ρ, V) $\cong\left(G, \rho^{*}, V^{*}\right)$ and we identify V^{*} with V.

Let $S_{i j}^{k}$ be the i-codimensional G-orbit in V with the j-codimensional dual orbit such that its isotropy subgroup has a k-dimensional unipotent part. We denote by $\Lambda_{i j}^{k}$ the Zariski-closure of the conormal bundle of $S_{i j}^{k}$. In Table I, N.P. (resp. $\not \subset W$) implies that $\Lambda_{i j}^{k}$ is not G prehomogeneous (resp. $\Lambda_{i j}^{k} \not \subset W$). In the case that $\Lambda_{i j}^{k}$ is G-prehomogeneous and $\Lambda_{i j}^{k} \subset W$, the order ord ${ }_{A} f(x)^{s}$ of the simple holonomic system $\mathfrak{M}=\mathcal{E} f^{s}$ on $\Lambda=\Lambda_{i j}^{k}$ is given in Table I.

[^0]Theorem 1. The triplet $\left(\operatorname{Spin}(10) \times G L(3)\right.$, half-spin rep. $\otimes \Lambda_{1}$, $V(16) \otimes V(3))$ has thirty-two orbits given in Table I.

Remark 1. We identify $V=V(16) \otimes V(3) \quad$ with $\quad V(16) \oplus V(16)$ $\oplus V(16)$. The isotropy subgroups are given up to local isomorphism. In general, $U(n)\left(\right.$ resp. G_{a}) denotes an n-dimensional unipotent group (resp. the one-dimensional additive group). In Table I, \times (resp.•) means the direct product (resp. semi-direct product).

Remark 2. The orbital decomposition was first tried by H . Kawahara (see [7]). Although he missed the orbit $S_{11,15}^{9}$, his method is effective for the complete orbital decomposition.

Remark 3. The prehomogeneity of the triplet (G, ρ, V) is also obtained from that of other triplets as follows. Since (Spin(10) $\left.\times G L(2), \rho_{1} \otimes \Lambda_{1}, V(16) \otimes V(2)\right)$ and ($\left.G_{2} \times G L(2), \Lambda_{2} \otimes \Lambda_{1}, V(7) \otimes V(2)\right)$ are P.V.'s (see [1]), one can see easily that the triplet ($(G L(1) \times \operatorname{Spin}(10))$ $\left.\times G L(14),\left(\Lambda_{1} \otimes 1+1 \otimes \rho_{1}\right) \otimes \Lambda_{1},(V(1) \oplus V(16)) \otimes V(14)\right)$ is a P.V., and so is its castling transform $\left((G L(1) \times S p i n(10)) \times G L(3),\left(\Lambda_{1} \otimes 1+1 \otimes \rho_{1}\right) \otimes \Lambda_{1}\right.$, $(V(1) \oplus V(16)) \otimes V(3)) . \quad$ In particular, $\left(S p i n(10) \times G L(3), \rho_{1} \otimes \Lambda_{1}, V(16)\right.$ $\otimes V(3))$ is a P.V.

Table I

The	orbits	Representative points	Isotropy subgroups	Order	The dual orbits
(1)	$S_{0,48}^{0}$	$\left(1+e_{1}^{*}, e_{1} e_{2}+e_{2}^{*}, e_{2} e_{3}+e_{3}^{*}\right)$	$S L(2) \times S L(2)$	0	$S_{48,0}^{0}$
(2)	$S_{1,27}^{7}$	$\left(1+e_{1}^{*}, e_{1} e_{2}+e_{3} e_{4}, e_{1} e_{3}+e_{4} e_{5}\right)$	$G L(1)^{2} \cdot U(5)$	-s-1/2	$S_{27,1}^{17}$
(3)	$S_{3,19}^{5}$	$\left(1+e_{1}^{*}, e_{1} e_{2}+e_{3} e_{4}, e_{1} e_{3}+e_{3}^{*}\right)$	$(G L(1) \times S L(2)) \cdot U(5)$	$-2 s-3 / 2$	$S_{19,3}^{17}$
(4)	$S_{3,35}^{4}$	$\left(1+e_{1}^{*}, e_{2} e_{3}+e_{2}^{*}, e_{1} e_{2}\right)$	$\left(G L(1)^{2} \times S L(2)\right) \cdot U(4)$	$\not \subset W$	$S_{35,3}^{12}$
(5)	$S_{5,15}^{7}$	$\left(1+e_{1}^{*}, e_{1} e_{2}+e_{2}^{*}, e_{2} e_{3}+e_{4}^{*}\right)$	$(G L(1) \times S L(2)) \cdot U(7)$	$\not \subset W$	$S_{15,5}^{15}$
(6)	$S_{5,23}^{7}$	$\left(1+e_{1}^{*}, e_{1} e_{2}+e_{3} e_{4}, e_{4} e_{5}+e_{5}^{*}\right)$	$(G L(1) \times S L(2)) \cdot G_{a}^{7}$	N.P.	$S_{23,5}^{14}$
(7)	$S_{6,14}^{9}$	$\left(1+e_{1}^{*}, e_{2} e_{3}+e_{2}^{*}, e_{1} e_{4}\right)$	$G L(1)^{3} \cdot U(9)$	$-5 s-12 / 2$	$S_{14,6}^{7}$
(8)	$S_{6,22}^{2}$	(1, $\left.e_{1}^{*}, e_{1} e_{2}+e_{2}^{*}\right)$	$\left(G L(1)^{2} \times S L(3)\right) \cdot U(2)$	$\not \subset W$	$S_{22,0}^{7}$
(9)	$S_{7,17}^{10}$	(1, $\left.e_{1} e_{2}+e_{1}^{*}, e_{1} e_{3}+e_{4}^{*}\right)$	$G L(1)^{3} \cdot U(10)$	N.P.	$S_{17,7}^{14}$
(10)	$S_{7,23}^{8}$	$\left(1+e_{1}^{*}, e_{1} e_{2}+e_{2}^{*}, e_{2} e_{3}\right)$	$\left(G L(1)^{2} \times S L(2)\right) \cdot U(8)$	$-3 s-8 / 2$	$S_{23,7}^{16}$
(11)	$S_{8,8}^{11}$	(1, $\left.e_{1} e_{2}+e_{3} e_{4}, e_{1} e_{3}+e_{1}^{*}\right)$	$G L(1)^{3} \cdot U(11)$	$-6 s-17 / 2$	self-dual
(12)	$S_{9,9}^{9}$	(1, $\left.e_{1}^{*}, e_{1} e_{2}+e_{3}^{*}\right)$	$\left(G L(1)^{3} \times S L(2)\right) \cdot U(9)$	$-6 s-15 / 2$	self-dual
(13)	$S_{10,10}^{10}$	(1, $\left.e_{1}^{*}, e_{1} e_{2}+e_{3} e_{4}\right)$	$\left(G L(1)^{3} \times S L(2)\right) \cdot U(10)$	$\not \subset W$	self-dual
(14)	$S_{11,11}^{12}$	$\left(1+e_{1}^{*}, e_{1} e_{2}, e_{2} e_{3}+e_{3}^{*}\right)$	$\left(G L(1)^{2} \times S L(2)\right) \cdot U(12)$	$-6 s-18 / 2$	self-dual
(15)	$S_{11,15}^{9}$	(1, $\left.e_{1} e_{2}, e_{1} e_{3}+e_{1}^{*}\right)$	$\left(G L(1)^{2} \times S L(2) \times S L(2)\right) \cdot U(9)$	$\not \subset W$	$S^{15,11}$
(16)	$S_{13,13}^{11}$	$\left(1, \mathrm{e}_{1} e_{2}, e_{3} e_{4}+e_{3}^{*}\right)$	$\left(G L(1)^{2} \times S L(2) \times S L(2)\right) \cdot U(11)$	$\not \subset W$	$S_{13,13}^{14}$
(17)	$S_{13,13}^{14}$	$\left(1+e_{1}^{*}, e_{2} e_{3}+e_{2}^{*}, e_{3} e_{4}\right)$	$\left(G L(1)^{2} \times S L(2)\right) \cdot U(14)$	$\not \subset W$	$S_{13,13}^{11}$
(18)	$S_{14,6}^{7}$	(1, $e_{1} e_{2}, e_{1}^{*}$)	$\left(G L(1)^{2} \times S L(2) \times S L(3)\right) \cdot U(7)$	$-7 s-20 / 2$	$S_{6,14}^{9}$
(19)	$S_{14,30}^{2}$	$\left(1+e_{1}^{*}, e_{1} e_{2}+e_{2}^{*}, 0\right)$	$\left(G L(1) \times G_{2} \times S L(2)\right) \cdot G_{a}^{2}$	N.P.	$\mathrm{S}_{30,14}^{10}$
(20)	$S_{15,5}^{15}$	(1, e, $e_{2}, e_{1} e_{3}+e_{3}^{*}$)	$\left(G L(1)^{3} \times S L(2)\right) \cdot U(15)$	$\not \subset W$	$S_{5,15}^{7}$
(21)	$S_{15,11}^{13}$	$\left(1+e_{1}^{*}, e_{2} e_{3}+e_{2}^{*}, 0\right)$	$\left(G L(1)^{2} \times S L(2) \times S L(2)\right) \cdot U(13)$	$\not \subset W$	$S_{11,15}^{9}$
(22)	$S_{18,16}^{8}$	(1, $\left.e_{1} e_{2}+e_{3} e_{4}, e_{5}^{*}\right)$	$(G L(1) \times S L(2) \times S p(2)) \cdot U(8)$	N.P.	self-dual
(23)	$S_{17,7}^{14}$	(1, $e_{1} e_{2}, e_{3} e_{4}$)	$\left(G L(1)^{3} \times S L(2) \times S L(2)\right) \cdot U(14)$	N.P.	$S_{7,17}^{10}$
(24)	$S_{18,18}^{13}$	(1, $\left.e_{1} e_{2}+e_{1}^{*}, 0\right)$	$\left(G L(1)^{3} \times S L(3)\right) \cdot U(13)$	$\not \subset W$	self-dual
(25)	$S_{19,3}^{17}$	(1, $\left.e_{1} e_{2}, e_{1} e_{3}+e_{2} e_{4}\right)$	$\left(G L(1)^{2} \times S L(2) \times S L(2)\right) \cdot U(17)$	$-10 s-35 / 2$	$S_{3,19}^{5}$
(26)	$S_{22,6}^{10}$	(1, $\left.e_{1}^{*}, 0\right)$	$\left(G L(1)^{3} \times S L(4)\right) \cdot U(10)$	$\not \subset W$	$S_{6,22}^{2}$
(27)	$S_{23,5}^{14}$	(1, $e_{1} e_{2}, e_{1} e_{3}$)	$\left(G L(1)^{2} \times S L(2) \times S L(3)\right) \cdot U(16)$	N.P.	$S_{5,23}^{7}$
(28)	$S_{23,7}^{16}$	(1, $\left.e_{1} e_{2}+e_{3} e_{4}, 0\right)$	$\left(G L(1)^{3} \times S p(2)\right) \cdot U(16)$	$-9 s-32 / 2$	$S_{7,23}^{8}$
(29)	$S_{27,1}^{17}$	(1, $\left.e_{1} e_{2}, 0\right)$	$\left(G L(1)^{2} \times S L(2) \times S L(2) \times S L(3)\right) \cdot U(17)$	$-11 s-41 / 2$	$S_{1,27}^{7}$
(30)	$S_{30,14}^{10}$	$\left(1+e_{1}^{*}, 0,0\right)$	$\left(G L(1)^{2} \times S L(2) \times S p i n(7)\right) \cdot U(10)$	N.P.	$S_{14,39}^{2}$
(31)	$S_{30,3}^{12}$	$(1,0,0)$	$\left(\mathrm{GL}(1)^{2} \times S L(2) \times S L(5)\right) \cdot G_{a}^{12}$	$\not \subset W$	$S_{3,35}^{4}$
(32)	$S_{48,0}^{0}$	$(0,0,0)$	$\operatorname{Spin}(10) \times G L(3)$	$-12 s-48 / 2$	$S_{0,48}^{0}$

Fig. 1. The Holonomy Diagram of ($\left.\operatorname{Spin}(10) \times G L(3), \rho_{1} \otimes \Lambda_{1}, V(16) \otimes V(3)\right)$.
§2. Holonomy diagram and the b-function. The holonomy diagram of (G, ρ, V) is given in Fig. 1, where (ij stands for $\Lambda_{i j}^{k}$.

The intersections
 and

are all G_{0}-prehomogeneous, with $G_{0}=\operatorname{Spin}(10) \times S L(3)$. Since (O48) is clearly in W, (127), 319) and their duals are contained in W (see Prop. 6.6 in [2]). To show that (99), (614), (88), (723) and their duals are in W, it is enough to prove the following lemma.

Lemma. $\Lambda_{8,8}^{11} \subset W$.
Proof. Put $x_{8}=\left(1, e_{1} e_{2}+e_{3} e_{4}, e_{1} e_{3}+e_{1}^{*}\right)$ and $y_{8}=\left(2 e_{5}^{*}-(1 / 2) e_{3} e_{5}\right.$, $\left.(3 / 2) e_{3} e_{4}-(1 / 2) e_{4}^{*},-(3 / 2) e_{1} e_{5}\right)$. Then, $\left(x_{8}, y_{8}\right)$ is a point of the Zariskidense G-orbit in $\Lambda_{8,8}^{11}$. Now put $x=x_{8}-\left(e_{3} e_{5}+e_{5}^{*}, e_{4} e_{5}+e_{4}^{*}, e_{1} e_{5}\right), y=y_{8}$ $+\left(3 / 2,(3 / 2) e_{1} e_{2}+(1 / 2) e_{3} e_{4},(1 / 2) e_{1} e_{3}+2 e_{1}^{*}\right)$. Then we have $f(x) \neq 0$ and $y=\operatorname{grad} \log f(x)$, namely, $(x, y) \in W$. For $\varepsilon \in C^{\times}$, put $g_{s}=\left(\begin{array}{cc}h_{\varepsilon} & 0 \\ 0 & { }^{t} h_{s}^{-1}\end{array}\right)$ $\times\left(\begin{array}{cc}\varepsilon^{4} & \\ & \varepsilon^{2} \\ & 1\end{array}\right) \in G_{x_{8}}$ where $h_{s}=\operatorname{diag}\left(\varepsilon^{4}, \varepsilon^{-2}, 1, \varepsilon^{2}, \varepsilon^{4}\right)$. Then we have $\left(x_{8}, y_{8}\right)$ $=\lim _{s \rightarrow 0}\left(\rho\left(g_{s}\right) x, \varepsilon^{4} \rho^{*}\left(g_{s}\right) y\right) \in W$ and hence $\Lambda_{8,8}^{11} \subset W$.
Q.E.D.

From Fig. 1 and Theorem 7.5 in [2], we obtain the b-function.
Proposition. The b-function $b(s)$ of the relative invariant $f(x)$ is given by

$$
\begin{aligned}
b(s)= & (s+1)\left(s+\frac{3}{2}\right)(s+2)\left(s+\frac{5}{3}\right)\left(s+\frac{6}{3}\right)\left(s+\frac{7}{3}\right)\left(s+\frac{8}{3}\right)\left(s+\frac{9}{3}\right) \\
& \times\left(s+\frac{10}{3}\right)(s+3)\left(s+\frac{7}{2}\right)(s+4)
\end{aligned}
$$

Remark. For the conormal bundles $\Lambda_{11,11}^{12}$ and Λ which are not G prehomogeneous, it is not known whether they are in W or not.

References

[1] M. Sato and T. Kimura: Nagoya Math. J., 65, 1-155 (1977).
[2] M. Sato, M. Kashiwara, T. Kimura, and T. Oshima: Invent. math., 62, 117-179 (1980).
[3] T. Kimura: Nagoya Math. J., 85, 1-80 (1982).
[4] I. Ozeki: Proc. Japan Acad., 55A, 37-40 (1979).
[5] T. Kimura and M. Muro: ibid., 55A, 384-389 (1979).
[6] I. Ozeki: ibid., 56A, 18-21 (1980).
[7] H. Kawahara: On the prehomogeneous vector spaces associated with the spin group $\operatorname{Spin}(10)$. Master Thesis, Univ. of Tokyo, pp. 1-121 (1974) (in Japanese).

[^0]: *) The Institute of Mathematics, University of Tsukuba.
 **) The School for the Blind attached to University of Tsukuba.

