65. On Invariant Differential Operators on Bounded Symmetric Domains of Type IV

By Shōichi Nakajima

Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., June 15, 1982)

We shall give an explicit calculation of a system of generators of the algebra of invariant differential operators on a bounded symmetric domain of type IV.

For each $q \geq 3(q \in N)$, put

$$
\mathfrak{D}_{q}=\left\{z={ }^{t}\left(z_{1}, \cdots, z_{q}\right) \in C^{q} \mid y_{1} y_{q}-\sum_{i=2}^{q-1} y_{i}^{2}>0, y_{1}>0\right\}
$$

where $z_{i}=x_{i}+\sqrt{-1} y_{i}, x_{i}, y_{i} \in \boldsymbol{R}(1 \leq i \leq q)$. Then \mathfrak{D}_{q} is a Hermitian symmetric space of rank 2 , holomorphically isomorphic to a bounded symmetric domain of type IV. The group $S O_{o}(2, q)$ acts on \mathfrak{D}_{q}, and $\mathfrak{D}_{q} \cong S O_{o}(2, q) / S O(2) \times S O(q)$ as homogeneous spaces.

For $q=3, \mathfrak{D}_{3}$ is also isomorphic to $\mathfrak{F}_{2}=\left\{\left.Z \in M_{2}(C)\right|^{t} Z=Z, \operatorname{Im} Z>0\right\}$, the Siegel upper half-plane of genus 2. An isomorphism $\mathfrak{D}_{3} \rightarrow \mathfrak{S}_{2}$ is defined by ${ }^{t}\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(\begin{array}{ll}z_{1} & z_{2} \\ z_{2} & z_{3}\end{array}\right)$.

Let $D\left(\mathscr{D}_{q}\right)$ be the C-algebra of all $S O_{o}(2, q)$-invariant differential operators on \mathfrak{D}_{q}. Since \mathfrak{D}_{q} is of rank 2, $D\left(\mathfrak{D}_{q}\right)$ is isomorphic to the polynomial ring of 2 variables over C. A system of generators of $\boldsymbol{D}\left(\mathfrak{D}_{q}\right)$ will be given explicitly in Theorem.

The author would like to express his hearty thanks to Profs. T. Ibukiyama and Takayuki Oda, who gave him warm encouragements and helpful advices related to this subject.

Let \mathfrak{D}_{q} be as above, with the following action of $S O_{o}(2, q):$ Let Q_{o} and Q be the following symmetric matrices:

$$
\begin{aligned}
& Q_{o}=\left(\begin{array}{c|c|c}
0 & 0 & \frac{1}{2} \\
\hline 0 & -E_{q-2} & 0 \\
\hline \frac{1}{2} & 0 & 0
\end{array}\right] \in M_{q}(\boldsymbol{R}), \\
& Q=\left(\begin{array}{c|c|c}
0 & 0 & \frac{1}{2} \\
\hline 0 & Q_{0} & 0 \\
\hline \frac{1}{2} & 0 & 0
\end{array}\right] \in M_{q+2}(\boldsymbol{R}),
\end{aligned}
$$

where E_{q-2} is the identity matrix of degree $q-2$. Put

$$
O\left(Q_{o}\right)=\left\{\left.g \in G L_{q}(\boldsymbol{R})\right|^{t} g Q_{o} g=Q_{o}\right\}
$$

$S O\left(Q_{o}\right)=\left\{g \in O\left(Q_{o}\right) \mid \operatorname{det}(g)=1\right\}$,
$S O_{o}\left(Q_{o}\right)=$ the connected component of the identity of $S O\left(Q_{o}\right)$,
and define $O(Q), S O(Q)$ and $S O_{o}(Q)$ similarly using Q instead of Q_{0}. Then $S O_{o}(Q)$ is isomorphic to $S O_{o}(2, q)$, and acts on \mathfrak{D}_{q} in the following way. For $z={ }^{t}\left(z_{1}, \cdots, z_{q}\right) \in \mathfrak{D}_{q}$, put

$$
\tau(z)={ }^{t}\left(-z_{1} z_{q}+\sum_{i=2}^{q-1} z_{i}^{2},-z_{1}, \cdots,-z_{q}, 1\right) \in \boldsymbol{C}^{q+2} .
$$

Then the action of $g \in S O_{o}(Q)$ on $z, g: z \rightarrow g \cdot z$, is defined by

$$
g \cdot \tau(z)=\varepsilon \cdot \tau(g \cdot z) \quad \varepsilon=\varepsilon(g, z) \in C^{\times},
$$

where, on the left side, the action of g is the linear one ($g \in G L_{q+2}(C)$).
Through this action of $S O_{o}(Q) \cong S O_{o}(2, q), \mathfrak{D}_{q}$ can be identified with $S O_{o}(2, q) / S O(2) \times S O(q)$. For a proof, see [1] chap. 6, § 3. (In [1], the coefficients are slightly different from ours.)

For a function f on \mathfrak{D}_{q} and $g \in S O_{o}(Q)$, we define f^{g} by the equation $f^{g}(z)=f(g \cdot z)$, for $z \in \mathfrak{D}_{q}$. If X is a differential operator on \mathfrak{D}_{q}, we define X^{g} by $X^{g}(f)=\left[X\left(f^{g-1}\right)\right]^{g}$ for any function f on \mathfrak{D}_{q}. Finally, we define $\boldsymbol{D}\left(\mathfrak{D}_{q}\right)$ as the \boldsymbol{C}-algebra of all differential operators X on \mathfrak{D}_{q} such that $X^{g}=X$ for all $g \in S O_{o}(Q)$.

In order to write down the differential operators on \mathfrak{D}_{q}, we use the following abbreviations.

$$
\begin{align*}
& \partial_{i}=\frac{\partial}{\partial z_{i}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{i}}-\sqrt{-1} \frac{\partial}{\partial y_{i}}\right) \\
& \bar{\partial}_{i}=\frac{\partial}{\partial \bar{z}_{i}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{i}}+\sqrt{-1} \frac{\partial}{\partial y_{i}}\right)
\end{align*}
$$

\sum [resp. $\left.\Sigma^{\prime}\right]$ will always mean $\sum_{i=1}^{q}\left[\right.$ resp. $\left.\sum_{i=2}^{q-1}\right]$.
Theorem. Let Δ_{1} and Δ_{2} be the following differential operators on \mathfrak{D}_{q}.

$$
\begin{aligned}
\Delta_{1}= & \sum_{i, j=1}^{q} y_{i} y_{j} \partial_{i} \bar{\partial}_{j}-d\left(\partial_{1} \bar{\partial}_{q}+\bar{\partial}_{1} \partial_{q}-\sum^{\prime} \partial_{i} \bar{\partial}_{i}\right), \\
\Delta_{2}= & d^{2}\left(\partial_{1} \partial_{q}-\frac{1}{4} \sum^{\prime} \partial_{i}^{2}\right)\left(\bar{\partial}_{1} \bar{\partial}_{q}-\frac{1}{4} \sum^{\prime} \bar{\partial}_{i}^{2}\right) \\
& +\sqrt{-1} \frac{q-2}{4} d\left(\sum y_{i} \partial_{i}\right)\left(\bar{\partial}_{1} \bar{\partial}_{q}-\frac{1}{4} \sum^{\prime} \bar{\partial}_{i}^{2}\right) \\
& -\sqrt{-1} \frac{q-2}{4} d\left(\sum y_{i} \bar{\partial}_{i}\right)\left(\partial_{1} \partial_{q}-\frac{1}{4} \sum^{\prime} \partial_{i}^{2}\right) \\
& +\frac{(q-2)^{2}}{16} d\left(\partial_{1} \bar{\partial}_{q}+\bar{\partial}_{1} \partial_{q}-\frac{1}{2} \sum^{\prime} \partial_{i} \bar{\partial}_{i}\right),
\end{aligned}
$$

where $d=y_{1} y_{q}-\sum^{\prime} y_{i}^{2}$.
Then they belong to $\boldsymbol{D}\left(\mathfrak{D}_{q}\right)$, and $\boldsymbol{D}\left(\mathfrak{D}_{q}\right)$ is the polynomial ring of 2
variables generated by Δ_{1} and Δ_{2}. The operator Δ_{1} is, up to a constant multiple, the Laplace operator of \mathfrak{D}_{q}.

Proof. By using Th. 6.15 in [2] Chap. X, we can show the following facts. The algebra $D\left(D_{q}\right)$ is isomorphic to the polynomial ring of 2 variables and its 2 generators are necessarily of ranks 2 and 4 . If Δ_{1}^{\prime} and Δ_{2}^{\prime} generate $D\left(\mathfrak{D}_{q}\right)$ (rank of $\Delta_{i}^{\prime}=2 i, i=1,2$), the elements of rank 2 [resp. of rank 4] in $\boldsymbol{D}\left(\mathfrak{D}_{q}\right)$ are of the form $a \Delta_{1}^{\prime}, a \in \boldsymbol{C}^{\times}$[resp. $b \Delta_{2}^{\prime}+c\left(\Delta_{1}^{\prime}\right)^{2}$ $+d \Delta_{1}^{\prime}+e ; b, \cdots, \mathrm{e} \in \boldsymbol{C}, b$ or $\left.c \neq 0\right]$. Hence, Δ_{1}^{\prime} is, up to a constant multiple, the Laplace operator of \mathfrak{D}_{q}.

Suppose we could prove that Δ_{1} and Δ_{2} belong to $\boldsymbol{D}\left(\mathfrak{D}_{q}\right)$. Since Δ_{1} and Δ_{2} are of ranks 2 and 4 , they are of the form $\Delta_{1}=a \Delta_{1}^{\prime}, \Delta_{2}=b \Delta_{2}^{\prime}+c\left(\Delta_{1}^{\prime}\right)^{2}$ $+d \Delta_{1}^{\prime}+e ; a, \cdots, e \in C, a \neq 0, b$ or $c \neq 0$. Here, we can see $b \neq 0$, because it is easily verified that $\Delta_{2} \notin C\left[\Delta_{1}\right]$. This means that Δ_{1} and Δ_{2} also generate $\boldsymbol{D}\left(\mathfrak{D}_{q}\right)$, and $\boldsymbol{D}\left(\mathfrak{D}_{q}\right)$ is the polynomial ring generated by Δ_{1} and Δ_{2}.

So, we shall prove that Δ_{1} and Δ_{2} belong to $D\left(\mathscr{D}_{q}\right)$, i.e. that they are invariant by $\mathrm{SO}_{0}(Q)$.

Let $p_{\xi}, k_{a, A}$ and w be the following elements of $S O_{o}(Q)$.

$$
p_{\xi}=\left(\begin{array}{c|c|c}
1 & \tilde{\xi} & \mu \\
\hline 0 & E_{q} & -\xi \\
\hline 0 & 0 & 1
\end{array}\right), \quad \xi={ }^{t}\left(\xi_{1}, \cdots, \xi_{q}\right) \in \boldsymbol{R}^{q}
$$

where $\tilde{\xi}=\left(\xi_{q},-2 \xi_{2}, \cdots,-2 \xi_{q-1}, \xi_{1}\right)$, and $\mu=-\xi_{1} \xi_{q}+\sum^{\prime} \xi_{i}^{2}$,

$$
k_{a, A}=\left(\begin{array}{c|c|c}
a & 0 & 0 \\
\hline 0 & A & 0 \\
\hline 0 & 0 & a^{-1}
\end{array}\right), \quad a \in R^{\times}, \quad A \in O\left(Q_{o}\right),
$$

$$
w=\left(\begin{array}{c|c|cc}
0 & 0 & 0 & -1 \\
-1 & 0 \\
\hline 0 & E_{q-2} & 0 \\
\hline \begin{array}{rrr}
0 & -1 & 0
\end{array} & 0
\end{array}\right\}
$$

They act on \mathfrak{D}_{q} as follows;

$$
\begin{aligned}
& p_{\xi} \cdot z=z+\xi, \\
& k_{a, A} \cdot z=a A z, \\
& w \cdot z=\frac{1}{\delta}{ }^{t}\left(-z_{q}, z_{2}, \cdots, z_{q-1},-z_{1}\right),
\end{aligned}
$$

where $\delta=z_{1} z_{q}-\sum^{\prime} z_{i}^{2}$.
We can show that $p_{\xi}, k_{a, 4}$ and $w\left(\xi \in \boldsymbol{R}^{q}, a \in \boldsymbol{R}^{\times}, A \in O\left(Q_{o}\right)\right)$ generate $S O_{o}(Q)$. Therefore, to prove that Δ_{1} and Δ_{2} are invariant by $S O_{o}(Q)$, it is sufficient to verify that they are invariant by $p_{\xi}, k_{a, A}$ and w.
(I) Invariance by p_{ξ} and $k_{a, 4}$. Obviously, Δ_{1} and Δ_{2} are invariant
by p_{ξ}, and we can easily verify that they are invariant by $k_{a, A}$, if we notice the equation $\partial_{1} \partial_{q}-(1 / 4) \sum^{\prime} \partial_{i}^{2}=(1 / 4)\left(\partial_{1}, \cdots, \partial_{q}\right) Q_{o}^{-1 t}\left(\partial_{1}, \cdots, \partial_{q}\right)$.
(II) Invariance by w. The action of w is as follows;

$$
\begin{array}{ll}
\delta^{w}=\delta^{-1} & \left(\delta=z_{1} z_{q}-\sum^{\prime} z_{i}^{2}\right), \\
d^{w}=(\delta \bar{\delta})^{-1} d & \left(d=y_{1} y_{q}-\sum^{\prime} y_{i}^{2}\right), \\
\partial_{1}^{w}=-\delta \partial_{q}+z_{1} D, & \\
\partial_{q}^{w}=-\delta \partial_{1}+z_{q} D, & \\
\partial_{i}^{w}=\delta \partial_{i}+2 z_{i} D & (2 \leq i \leq q-1),
\end{array}
$$

where $D=\sum z_{i} \partial_{i}$. Since the action of w is commutative with complex conjugation, we can see the action of w on $\bar{\partial}_{i}^{\prime}$'s. After straightforward computations, we get

$$
\left(\partial_{1} \partial_{q}-\frac{1}{4} \Sigma^{\prime} \partial_{i}^{2}\right)^{w}=\delta^{2}\left(\partial_{1} \partial_{q}-\frac{1}{4} \Sigma^{\prime} \partial_{i}^{2}\right)-\frac{q-2}{2} \delta D,
$$

and furthermore, if we put $D^{*}=\sum y_{i} \partial_{i}$, we have

$$
\left(D^{*}\right)^{w}=\delta(\bar{\delta})^{-1} D^{*}-2 \sqrt{-1} d(\bar{\delta})^{-1} D
$$

and

$$
\begin{aligned}
\left(\partial_{1} \bar{\partial}_{q}+\bar{\partial}_{1} \partial_{q}-\frac{1}{2} \Sigma^{\prime} \partial_{i} \bar{\partial}_{i}\right)^{w}= & \delta \bar{\delta}\left(\partial_{1} \bar{\partial}_{q}+\bar{\partial}_{1} \partial_{q}-\frac{1}{2} \sum^{\prime} \partial_{i} \bar{\partial}_{i}\right) \\
& +2 \sqrt{-1} \delta D^{*} \bar{D}-2 \sqrt{-1} \bar{\delta} \overline{D^{*}} D+4 d D \bar{D}
\end{aligned}
$$

If we rewrite Δ_{1}^{w} and Δ_{2}^{w} by using these equations, and if we rearrange them, we obtain $\Delta_{1}^{w}=\Delta_{1}$ and $\Delta_{2}^{w}=\Delta_{2}$.

By (I) and (II), we know that Δ_{1} and Δ_{2} belong to $D\left(D_{q}\right)$. Therefore, as stated at the beginning of the proof, all assertions of Theorem are proved.

References

[1] W. L. Baily, Jr.: Introductory Lectures on Automorphic Forms. Publ. Math. Soc. Japan, 12 (1973).
[2] S. Helgason: Differential Geometry and Symmetric Spaces. Academic Press (1962).

