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1. LetE be an elliptic curve defined over Q(A, A, A, A,, A) by
the equation"
( 1 ) y+Axy-9Ay x-9Ax -FAx+A
in (x, y)-plane. Let u x/y, w 1/y. (1) is then represented by
the equation"

w=u +Auw+A.uw+Aw +Auw +Aw
in (u, w)-plane. Then we get the ormal expansion
( 2 ) w=u+Au+(A+A)u+(A+2AA+A)u+ ..
Denote by h(u) the right hand side o (2). Then h(u) has coefficients
in Z[A, A, A, A, A].

Now we regard E as a plane cubic model of an abelian variety
of dimension 1. (0, 0)e E in (u, w)-plane is denoted by 0, which is
zero or the group law additively expressed in the abelian variety E.
O is the point at infinity o E in (x, y)-plane.

Let P=(u, w) eE. in (u, w)-plane (i=1, 2, 3) and P=P+P, the
addition being performed in the belian variety E.

Then we have
( 3 ) u=F.(u, u) u -9u--Auu-A(uu+uu)

--2A(uu+uu)+ (AA-3A)uu+....
F(u, u) is generic orml group.

Let a e R, i= 1, 2, 3, 4 or 6. If we substitute a to A in (1), we
get an elliptic curve defined over K, which we shall denote E from
now on. The formal group F(u, u) over R associated with this E is
obtained rom (3) by the above substitutions. (Cf. [2]-[4], [6], [11],
[13].)

Denote by E(K) the set of K-rational points and the point at in-
finity of E in (x, y)-plane.

If P=(x, y)e E(K) in (x, y)-plane satisfies ,(x)0 or ,(y)0, we
have ,(x) 2m, ,(y) 3m and x x’ /, y y’ / where x’, y’ are
units in R, and m is an integer. In this case, we write N(P)=m and
we put N(O)=oo. We define now E(z)={PIN(P)=n}. If E(7n) is
represented in (u, w)-plane, it consists of the origin and the point
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(=u’, W’) (mn), where u’, w’ are units in R.
2. It is well-known that E(") is a subgroup of the abelian

variety E. Now we have
Proposition 3. The map (u, w)--u is an isomorphism E(=n)

_(pn, 4), where we define (pn, 4) by the formal group F associated
with E. (Cf. Tare [11] Theorem 3, p. 189.)

Let be defined as in I ([9]) for the formal group F(u, u). Since
(P", 4) with n> is an R-module as shown in I ([9]), we can define in
E(z) a structure of R-module by the isomorphism of Proposition 3.

From Proposition 3 and I, we obtain the following
Theorem 4. In the same notations as above, E() is isomorphic

as R-module to p, when n.a.
Corollary. When k is a finite field with cardinal p, E() is a

product of a free Z-module of rank ef and a finite abelian group of a
p-power order.

As the formal group F associatecl with E cn be regrdecl as a
specialization o2 the generic formal group F, the results of II ([10])
can be appliecl to obtain more explicit issues. For example we have

Theorem . Let a torsion point P e E(zn) Of b finite order pn be
represented by (u, w) in (u, w)-plane. Then

e

where/, h’ have the same meanings as in Theorem 2.
Remark. Corollary o.f Theorem 4 and Theorem 5 cover the re-

sults of Cassels [1] and Oort [8].
:. Now, we have the ollowing known results for the height of

formal groups associated with elliptic curves E. When E has a good
reduction E mod p, E is defined over k. Let F be the reduction of F
mod p. is also defined over k and the height h of E is 1 or 2. (Cf.
[6], [11], [13].) When E has bad reduction mod p, we have h= c if E
has a cusp, and h=l if E has a node. (Cf. [13].)

As this holds also clearly for h’, the only possible values of h (resp.
h’) are 1, 2, c.

Using this, we get the following theorem improving the classical
result proved by Weil and Lut ([12], [7]).

Theorem 6. Let ch (k)=p, and AI=A--A=O in (1) E() is iso-
morphic to p as R-module, if any one of the following conditions is
satisfied

(a) p5 and ne/(p-1)
(b) p=3 andne/8
(c) p=2 andnO.
Remark. By a similar reasoning as above, we see 2or example
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that E(zn) is isomorphic to p, when
ch (k)- 2, 21a, a, a and n 0.

4. Finally, we mention an application to the torsion point of
Eo(K) defined as follows*).

E0(K)-- {PIP e E(K), P e End(k)}
where E is the nonsingular part of the reduction E of E mod p and
Ens(k)---EE(k). It is known that the kernel of the reduction map
Eo(K)--En(k) is E(u). (C. [11].)

By Theorem 2 we obtain
Theorem 7, Let e/(lp’- 1) 1. The subgroup of Eo(K) con-

sisting of torsion elements, is mapped in]ectively into E(k) by the
reduction map (Katz [5]).
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*) A point P in projective 2-space P(K)over K can be represented by (Xo, Xl, X)

where xeR(i=0,1,2) and one of x0, xl, x is a unit in R. Then we define P
=(0,,) in P:(k) where -----x mod .


