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In this note, we will prove the ollowing
Theorem. Let McP/ be a smooth complete intersection. We

assume for simplicity that M is non-degenerate, i.e., M is not contained
in any linear subspace of P+. Then any hyperplane section X of M
has the following two properties"

(A) X has only finitely many singular points;
(B) The Jacobian matrix J of XcP has rank r-1 at any sin-

gular point of X.
Conversely, if XcP is a non-degenerate complete intersection

having the properties (A) and (B), then there exists a smooth complete
intersection McP+ such that X is a hyperplane section of M.

Remark. The property (A) implies that X is reduced i dimM_2
and irreducible if dim M_3. Moreover, (A) is a partial refinement
of the ollowing

Zak’s Theorem (see [1]). Let McP+1 be an irreducible smooth
non-degenerate subvariety of codimension r and X an arbitrary
hyperplane section of M. Then the dimension of the singular locus
of X is less than r.

In [1], the property (A) is shown by using a suitable incidence
correspondence. Our proo is more direct and elementary.

Throughout this note, we fix an algebraically closed field k o any
characteristic and assume that all varieties are defined over k.

Proof of Theorem. For brevity, we introduce a symbol V(F,...,
F) which stands or the projective variety defined by the homogene-
ous polynomials F, ..., F. For a given smooth complete intersection
McP+1, we write M=V(F1,...,Fr), where F is a homogeneous
polynomial o degree d_2 in Z0, Zx, ., Z/. By a suitable linear
transformation o. the coordinates, we may assume that

X--M V {Z 1= 0}= V(F1, ..., Fr, Z+1).
Putting $’(Z0, ., Z) F(Zo, ., Zu, 0), we write

F(Zo, ..., Z+)=F(Zo, ..., Z)+Z+G(Zo, ..., Z+).
Denote by J(p)and J(p) the Jacobian mtrices o the defining equa-
tions {F, ..., F} and {F,..., F} at p e X, respectively. Then, since
Z+ 0 on X, we have
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J(P)=(G(p),
Since M is smooth, rankJ(p)=r. So we have rankJ(p)_r-1. This
implies (B).

Let S be an irreducible component o the singular locus o X.
We assume that S is of maximal dimension. Noting that rank J(p)
=r--1 at p e ScX, we choose a non-zero vector (a(p),..., at(p)) for
each p e S such that

Fia(p) (p)=0 (]=0, N).

Then the vector f(p)= (a(p)G(p), ., ar(p)G(p)) determines a point
in P-, which does not depend on the vector (a(p), ..., a(p)). In fact,
if a(p)G(p) a(p)G(p)=O, then a(p)(F/Z)(p)=O and J(p)
would have rank r-1. Thus, f" SPr- is a morphism. Assume
that f is not a constant map. Then f(S) {Y +. +Y=0}, where
(Y, ..., Y} are the homogeneous coordinates of pr-. This implies
that

a(P)Gr(p)= a(p) U(p)= 0 (]= O, 1, ..., N)
or some point p e S and M would not be smooth at p. Hence f must
be a constant map, and a,(p)G,(p) never vanish on S for some i. This
is possible only when dim S=0 since deg G,=d,-1 1.

Now, let X be a complete intersection V(F,...,F) in P
(d= deg F,2), and assume that X has the above properties (A) and
(B). Let S be the finite singular locus o X and let G)(Zo, ..., Z) be
a general homogeneous polynomial o degree d,-k. Set F(Zo,...,
Z+)=F,(Zo, Z)+, Z+ G)(Zo, Z). Then the Jacobiank=l

matrix () of M= g(N, ..., N)cP* at p e X is GI(), GI()
Since S is finite and ( is general, rank J(p) is equal to r a e S.
Hence J has rankr everywhere on X=M g(Z.). 0n the other
hand, MX is non-singular in virtue of he following

Lemma. Let f, ., f be olgomiel i z, ., (lr).
The the Ne vriet i A deed bg

f+z+. (i=1, ..., r)

Remark. The above heorem fails for a general smooth sub-
manifold MP*. Indeed, a hypersurfaee seetion of M satisfies
neither (A) nor (B) in general. herefore, ghe Veronese embedding
of M gives a eounterexample.
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