86. A Characterization of Hyperplane Cuts of Smooth Complete Intersections

By Shihoko Ishif
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 13, 1982)

In this note, we will prove the following
Theorem. Let $M \subset \boldsymbol{P}^{N+1}$ be a smooth complete intersection. We assume for simplicity that M is non-degenerate, i.e., M is not contained in any linear subspace of \boldsymbol{P}^{N+1}. Then any hyperplane section X of M has the following two properties:
(A) X has only finitely many singular points;
(B) The Jacobian matrix J of $X \subset \boldsymbol{P}^{N}$ has rank $r-1$ at any singular point of X.

Conversely, if $X \subset \boldsymbol{P}^{N}$ is a non-degenerate complete intersection having the properties (A) and (B), then there exists a smooth complete intersection $M \subset P^{N+1}$ such that X is a hyperplane section of M.

Remark. The property (A) implies that X is reduced if $\operatorname{dim} M \geq 2$ and irreducible if $\operatorname{dim} M \geq 3$. Moreover, (A) is a partial refinement of the following

Zak's Theorem (see [1]). Let $M \subset \boldsymbol{P}^{N+1}$ be an irreducible smooth non-degenerate subvariety of codimension r and X an arbitrary hyperplane section of M. Then the dimension of the singular locus of X is less than r.

In [1], the property (A) is shown by using a suitable incidence correspondence. Our proof is more direct and elementary.

Throughout this note, we fix an algebraically closed field k of any characteristic and assume that all varieties are defined over k.

Proof of Theorem. For brevity, we introduce a symbol $V\left(F_{1}, \cdots\right.$, F_{r}) which stands for the projective variety defined by the homogeneous polynomials F_{1}, \cdots, F_{r}. For a given smooth complete intersection $M \subset \boldsymbol{P}^{N+1}$, we write $M=V\left(\tilde{F}_{1}, \cdots, \tilde{F}_{r}\right)$, where \tilde{F}_{i} is a homogeneous polynomial of degree $d_{i} \geq 2$ in $Z_{0}, Z_{1}, \cdots, Z_{N+1}$. By a suitable linear transformation of the coordinates, we may assume that

$$
X=M \cap\left\{{\underset{\sim}{N}}_{N+1}=0\right\}=V\left(\tilde{F}_{1}, \cdots, \tilde{F}_{r}, Z_{N+1}\right) .
$$

Putting $F_{i}\left(Z_{0}, \cdots, Z_{N}\right)=\tilde{F}_{i}\left(Z_{0}, \cdots, Z_{N}, 0\right)$, we write

$$
\tilde{F}_{i}\left(Z_{\sim}, \cdots, Z_{N+1}\right)=F_{i}\left(Z_{0}, \cdots, Z_{N}\right)+Z_{N+1} G_{i}\left(Z_{0}, \cdots, Z_{N+1}\right)
$$

Denote by $\tilde{J}(p)$ and $J(p)$ the Jacobian matrices of the defining equations $\left\{\tilde{F}_{1}, \cdots, \tilde{F}_{r}\right\}$ and $\left\{F_{1}, \cdots, F_{r}\right\}$ at $p \in X$, respectively. Then, since $Z_{N+1}=0$ on X, we have

$$
\tilde{J}(p)=\binom{J(p)}{G_{1}(p), \cdots, G_{r}(p)}
$$

Since M is smooth, $\operatorname{rank} \tilde{J}(p)=r$. So we have $\operatorname{rank} J(p) \geq r-1$. This implies (B).

Let S be an irreducible component of the singular locus of X. We assume that S is of maximal dimension. Noting that rank $J(p)$ $=r-1$ at $p \in S \subset X$, we choose a non-zero vector ($a_{1}(p), \cdots, a_{r}(p)$) for each $p \in S$ such that

$$
\sum_{i=1}^{r} a_{i}(p) \frac{\partial F_{i}}{\partial Z_{j}}(p)=0 \quad(j=0, \cdots, N)
$$

Then the vector $f(p)=\left(a_{1}(p) G_{1}(p), \cdots, a_{r}(p) G_{r}(p)\right)$ determines a point in P^{r-1}, which does not depend on the vector $\left(a_{1}(p), \cdots, a_{r}(p)\right)$. In fact, if $a_{1}(p) G_{1}(p)=\cdots=a_{r}(p) G_{r}(p)=0$, then $\sum a_{i}(p)\left(\partial \tilde{F}_{i} / \partial Z_{j}\right)(p)=0$ and $\tilde{J}(p)$ would have rank $\leq r-1$. Thus, $f: S \rightarrow \boldsymbol{P}^{r-1}$ is a morphism. Assume that f is not a constant map. Then $f(S) \cap\left\{Y_{1}+\cdots+Y_{r}=0\right\} \neq \phi$, where $\left\{Y_{1}, \cdots, Y_{r}\right\}$ are the homogeneous coordinates of \boldsymbol{P}^{r-1}. This implies that

$$
\sum a_{i}(p) G_{r}(p)=\sum a_{i}(p) \frac{\partial F_{i}}{\partial Z_{j}}(p)=0 \quad(j=0,1, \ldots, N)
$$

for some point $p \in S$ and M would not be smooth at p. Hence f must be a constant map, and $a_{i}(p) G_{i}(p)$ never vanish on S for some i. This is possible only when $\operatorname{dim} S=0$ since $\operatorname{deg} G_{i}=d_{i}-1 \geq 1$.

Now, let X be a complete intersection $V\left(F_{1}, \cdots, F_{r}\right)$ in P^{N} ($d_{i}=\operatorname{deg} F_{i} \geq \mathbf{2}$), and assume that X has the above properties (A) and (B). Let S be the finite singular locus of X and let $G_{i}^{(k)}\left(Z_{0}, \cdots, Z_{N}\right)$ be a general homogeneous polynomial of degree $d_{i}-k$. Set $\tilde{F}_{i}\left(Z_{0}, \cdots\right.$, $\left.Z_{N+1}\right)=F_{i}\left(Z_{0}, \cdots, Z_{N}\right)+\sum_{k=1}^{d_{i}} Z_{N+1}^{k} G_{i}^{(k)}\left(Z_{0}, \cdots, Z_{N}\right)$. Then the Jacobian matrix $\tilde{J}(p)$ of $M=V\left(F_{1}, \cdots, F_{r}\right) \subset P^{N+1}$ at $p \in X$ is $\binom{J(p)}{G_{1}^{(1)}(p), \cdots, G_{r}^{(1)}(p)}$. Since S is finite and $G_{i}^{(1)}$ is general, rank $\tilde{J}(p)$ is equal to r at $p \in S$. Hence \tilde{J} has rank r everywhere on $X=M \cap V\left(Z_{N+1}\right)$. On the other hand, $M \backslash X$ is non-singular in virtue of the following

Lemma. Let f_{1}, \cdots, f_{r} be polynomials in $x_{1}, \cdots, x_{n}(1 \leq r \leq n)$. Then the affine variety in A^{n} defined by

$$
f_{i}+\sum_{j=1}^{n} a_{i j} x_{j}+a_{i n+1} \quad(i=1, \cdots, r)
$$

is non-singular for general coefficients $\left(a_{i j}\right) \in k^{r(n+1)}$.
Remark. The above theorem fails for a general smooth submanifold $M \subset P^{N+1}$. Indeed, a hypersurface section of M satisfies neither (A) nor (B) in general. Therefore, the Veronese embedding of M gives a counterexample.

Reference

[1] W. Fulton and R. Lazarsfeld: Connectivity and its applications in algebraic geometry. Lect. Note in Math., vol. 862, Springer-Verlag, pp. 2692 (1980).

