84. On Involutive Systems of Second Order of Codimension 2*)

By Keizo Yamaguchi
Department of Mathematics, Hokkaido University
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 13, 1982)

In [1] and [2], E. Cartan obtained, among others, the following result (p. 2 [2]), for which he gave the proof in the case of 2 or 3 independent variables:

Tout système en involution de deux équations aux dérivées partielles du second ordre s'intègre par des équations différentielles ordinaires.

The purpose of this note is to give a precise statement of the above theorem and to describe methods of integration in the case of n independent variables ($n \geqq 4$). Details will be published elsewhere. In this note, we always assume the differentiability of class C^{∞}.

The author is grateful to Prof. M. Kuranishi for his interest in this work and valuable comments during the author's stay at Columbia University.
§ 1. Classification of symbols and the statement of Theorem. Let (M, N, p) be a fibred manifold of fibre dimension 1, where $\operatorname{dim} N$ $=n$ and $\operatorname{dim} M=n+1$. Let $J^{k}(M, N, p)$ be the bundle of k-jets of local sections of (M, N, p) and C^{k} be the canonical differential system on $J^{k}(M, N, p)$.

Let R be an involutive system of second order which is locally defined by two equations, i.e., R is an involutive submanifold of $J^{2}(M, N, p)$ of codimension 2. Let x_{0} be any point of R. Our problem is to find every local solution f of R passing through x_{0}. More precisely, f is a section of (M, N, p) defined on a neighborhood U^{\prime} of z_{0} $=p_{-1}^{2}\left(x_{0}\right)$ such that $j_{z_{0}}^{2}(f)=x_{0}$ and $j^{2}\left(f^{\prime}\right)\left(U^{\prime}\right) \subset R$.

First we have
Proposition 1 (cf. p. 11 [2]). Let V be a vector space (over \boldsymbol{R} or C) of dimension n. Let A be a subspace of $S^{2}\left(V^{*}\right)$ of codimension 2. Then A is involutive if and only if there exists a base $\left\{e_{1}, \cdots, e_{n}\right\}$ of V such that the annihilator A^{\perp} of A in $S^{2}(V)$ is generated by $e_{1} \bigcirc e_{2}$ and $e_{1} \bigcirc e_{3}$, or $e_{1} \bigcirc e_{1}$ and $e_{1} \bigcirc e_{2}$.

Let $\mathscr{S}^{2}(V, W)$ be the contact algebra of second order of degree n (Definition 3.5 [3]). We now define involutive subalgebras $\mathfrak{\xi}^{1}$ and $\mathfrak{\xi}^{2}$ of $\mathfrak{C}^{2}(V, W)$ of codimension 2 by putting
*) Partially supported by Educational Projects for Japanese Mathematical Scientists.

$$
\begin{aligned}
& \mathfrak{S}^{i}=\mathfrak{Z}_{-3}^{i} \oplus \mathfrak{B}_{-2}^{i} \oplus \mathfrak{Z}_{-1}^{i} \quad(i=1,2), \\
& \mathfrak{Z}_{-3}^{i}=W, \quad \mathfrak{Z}_{-2}^{i}=W \otimes V^{*}, \quad \mathfrak{Z}_{-1}^{i}=V \oplus W \otimes f^{i} \quad(i=1,2),
\end{aligned}
$$

where $\left(f^{1}\right)^{\perp}=\left\langle e_{1} \bigcirc e_{2}, e_{1} \bigcirc e_{3}\right\rangle,\left(f^{2}\right)^{\perp}=\left\langle e_{1} \bigcirc e_{1}, e_{1} \bigcirc e_{2}\right\rangle \subset S^{2}(V)$.
From Proposition 1, it follows that ($R ; D^{1}, D^{2}$) is a $P D$ manifold of second order of degree n satisfying $D^{1}=\partial D^{2}$, where $D^{1}=\left.\partial C^{2}\right|_{R}, D^{2}$ $=\left.C^{2}\right|_{R}$ and ∂D^{2} is the derived system of D^{2} (cf. §4 [3]). Furthermore the symbol algebra $\xi(x)$ of ($R ; D^{1}, D^{2}$) at $x \in R$ is isomorphic with \mathfrak{B}^{1} or \mathfrak{B}^{2}. Our regularity assumption is that R is regularly involutive, i.e., symbol algebras $\mathfrak{\xi}(x)$ are mutually isomorphic for $x \in R$ (§5 [3]).

Now the main theorem can be stated as follows.
Theorem. Let R be an involutive system of $J^{2}(M, N, p)$ of codimension $2(n \geqq 4)$. Assume that R is regularly involutive on a neighborhood of $x_{0} \in R$. Then every local solution of R passing through x_{0} can be obtained by solving ordinary differential equations.

From now on, let R be a regularly involutive submanifold of $J^{2}(M, N, p)$ of codimension 2 . Then $\left(R, D^{2}\right)$ is a regular differential system of type $\mathfrak{\xi}^{1}$ or \mathfrak{S}^{2}. In both cases, since $E=\left\langle e_{1}\right\rangle$ is $G\left(\mathfrak{F}^{i}\right)$-invariant, we can consider the first order covariant system $N=N(E)$ of D^{2} corresponding to E (see § 7 [3]).
§2. Structure equations. Let x_{0} be any point of R. Then there exists a base $\left\{\pi, \pi_{i}, \omega_{i}, \pi_{i j}(1 \leqq i \leqq j \leqq n)\right\}$ of 1-forms on a neighborhood U of x_{0} such that $D^{2}=\left\{\pi=\pi_{1}=\cdots=\pi_{n}=0\right\}$ and that the following equalities hold (cf. Remark 6.7 (2) [3]) ;

$$
\begin{cases}\mathrm{d} \pi \equiv \sum_{i=1}^{n} \omega_{i} \wedge \pi_{i} & (\bmod \pi), \\ \mathrm{d} \pi_{i} \equiv \sum_{j=1}^{n} \omega_{j} \wedge \pi_{i j} & \left(\bmod \pi, \pi_{1}, \cdots, \pi_{n}\right)\end{cases}
$$

where $\pi_{i j}=\pi_{j i}(1 \leqq i, j \leqq n)$ and $\pi_{12}=\pi_{13}=0$ (case of type \mathfrak{z}^{1}) or $\pi_{11}=\pi_{12}$ $=0$ (case of type $\mathfrak{\xi}^{2}$).

A base $\left\{\pi, \pi_{i}, \omega_{i}, \pi_{i j}(1 \leqq i \leqq j \leqq n)\right\}$ of 1-forms on U satisfying D^{2} $=\left\{\pi=\pi_{1}=\cdots=\pi_{n}=0\right\}$ is called admissible if it satisfies the above equations. In both cases N is defined on U by π and π_{1}. The structure equation of N is given as follows.

Lemma 1. If R is of type ${ }^{3}$, there exists an admissible base of 1-forms on U such that the following equalities hold:

$$
\left\{\begin{array}{lll}
\mathrm{d} \pi \equiv \sum_{i=2}^{n} \omega_{i} \wedge \pi_{i} & \left(\bmod \pi, \pi_{1}\right), & \\
\mathrm{d} \pi_{1} \equiv \omega_{1} \wedge \pi_{11}+\sum_{\alpha=4}^{n}\left(\omega_{\alpha}+\sum_{\beta=4}^{n} A_{\alpha \beta} \pi_{\beta}\right) \wedge \pi_{1 \alpha} & \left(\bmod \pi_{1}\right),
\end{array}\right.
$$

where $A_{\alpha \beta}$ are functions on U such that $A_{\alpha \beta}+A_{\beta \alpha}=0$.
Lemma 2. If R is of type \mathfrak{B}^{2}, there exists an admissible base of 1-forms on U such that the following equalities hold:

$$
\left\{\begin{array}{l}
\mathrm{d} \pi \equiv \sum_{i=2}^{n} \omega_{i} \wedge \pi_{i} \quad\left(\bmod \pi, \pi_{1}\right), \\
\mathrm{d} \pi_{1} \equiv \sum_{\alpha=3}^{n} \omega_{\alpha} \wedge \pi_{1 \alpha}+B \omega_{2} \wedge \pi_{3}+C \pi_{2} \wedge \pi_{22} \quad\left(\bmod \pi, \pi_{1}\right),
\end{array}\right.
$$

where B and C are functions on U. Furthermore $B \cdot C=0$ and $C=0$ if $n \geqq 4$.

By Lemma 1, we see that if R is of type $\mathfrak{ß}^{1}, N^{*}=\left\{\pi_{1}=0\right\}$ is a covariant system of N. Furthermore, from Lemmas 1 and 2, it follows that $\nu_{x}\left(\operatorname{Ch}(N)(x) \cap \operatorname{Ch}\left(D^{1}\right)(x)\right)=\left\{a \in S^{2}\left(V^{*}\right) \mid v\right\lrcorner a=0$ for $\left.v \in E\right\}$ in both cases, where ν_{x} is an isomorphism of the symbol algebras $\mathfrak{B}(x)$ onto $\mathfrak{马}^{i}$.
$\S 3$. Reduction of $\left(\boldsymbol{R}, D^{2}\right)$. For each $u \in J^{1}(M, N, p)$, let I_{u} be the set of all hyperplanes in $C^{1}(u)$. We now consider the (involutive) Grassmann bundle $I(\mathfrak{C}, 1)$ of codimension 1 over $\mathfrak{C}=\left(J^{1}(M, N, p), C^{1}\right)$:

$$
I(\mathbb{C}, 1)=\underset{u \in J_{1}(M, N, p)}{ } I_{u} .
$$

Let φ be a map of R into $I(\mathfrak{C}, 1)$ defined by

$$
\varphi(x)=\rho_{*}(N(x)),
$$

where ρ is the projection of R onto $J^{1}(M, N, p)$. Then we see that φ is a map of constant rank and $\operatorname{Ker} \varphi_{*}=\operatorname{Ch}(N) \cap \operatorname{Ch}\left(D^{1}\right)$.

In the following we restrict our considerations in a neighborhood of $x_{0} \in R$ so that we may assume that $W=\operatorname{Im} \varphi$ is a submanifold of $I(\mathfrak{C}, 1)$. Then φ is a submersion of R onto W satisfying $\rho=q \cdot \varphi$, where q is the projection of W onto $J^{1}(M, N, p)$. There are two differential systems C and \bar{N} on W such that $N=\varphi_{*}^{-1}(\bar{N})$ and $D^{1}=\varphi_{*}^{-1}(C)$. Put $\psi\left(x_{0}\right)$ $=\varphi_{*}\left(D^{2}\left(x_{0}\right)\right) \subset \bar{N}\left(w_{0}\right), w_{0}=\varphi\left(x_{0}\right)$. We say that S is a solution of W if S is an n-dimensional integral manifold of (W, \bar{N}) such that $T_{w}(S)$ $\cap \operatorname{Ker} p_{*}=\{0\}$ at each $w \in S$. Now we have

Proposition 2. For a local solution f of R on a neighborhood U^{\prime} of $z_{0}=p_{-1}^{2}\left(x_{0}\right)$ such that $j_{z_{0}}^{2}(f)=x_{0}, s=\varphi \circ j^{2}(f)\left(U^{\prime}\right)$ is a solution of W satisfying $T_{w_{0}}(S) \subset \psi\left(x_{0}\right)$.

Conversely, for a solution S of W satisfying $T_{w_{0}}(S) \subset \psi\left(x_{0}\right)$, there exists a local solution f of R such that $\varphi \circ j^{2}(f)\left(U^{\prime}\right)$ coincides with S around w_{0}.

Thus our problem is reduced to that of finding every local solution S of W passing through w_{0} such that $T_{w_{0}}(S) \subset \psi\left(x_{0}\right)$. One can also see that the local equivalence problem of $\left(R, D^{2}\right)$ is reduced to that of ($W ; C, \bar{N}$).
§4. Method of integration. 4.1. Case of type \mathfrak{Z}^{1}. Since $\operatorname{Ker} \varphi_{*}$ $=\mathrm{Ch}(N)$ and N^{*} is a covariant system of N, there exists a covariant system \bar{N}^{*} of \bar{N} such that $N^{*}=\varphi_{*}^{-1}\left(\bar{N}^{*}\right)$. Now the integration is carried out by the following two steps (1) and (2).
(1) Find a maximal integral manifold Σ of $\left(W, \bar{N}^{*}\right)$ such that w_{0} $\in \Sigma$ and $T_{w_{0}}(\Sigma) \cap \operatorname{Ch}(C)\left(w_{0}\right)=\{0\}$.

Then $\operatorname{dim} \Sigma=2 n$ and $q: \Sigma \rightarrow J^{1}(M, N, p)$ is an immersion around w_{0}. Hence $\Sigma^{\prime}=q(\Sigma)$ is a submanifold of $J^{1}(M, N, p)$ around $u_{0}=p_{1}^{2}\left(x_{0}\right)$.
(2) Find a local solution f of the first order partial differential equation Σ such that $j_{z_{0}}^{2}(f)=x_{0}$.

Then f is a local solution of R. Conversely, every local solution f of R passing through x_{0} can be obtained in this way.
4.2. Case of type $弓^{2} . \quad \mathrm{Ch}(\bar{N})$ is a differential system of rank 1 such that $\mathrm{Ch}(\bar{N}) \cap \mathrm{Ch}(C)=\{0\}$. And we see that every local solution S of W satisfying $T_{w_{0}}(S) \subset \psi\left(x_{0}\right)$ is foliated by integral curves of $\mathrm{Ch}(\bar{N})$. Let H be a hypersurface in the base space N such that $z_{0}=p_{-1}^{2}\left(x_{0}\right) \in H$ and $T_{z_{0}}(H) \cap\left(p_{-1}^{2}\right)_{*}\left(\operatorname{Ch}(N)\left(x_{0}\right)\right)=\{0\}$. Then $\hat{H}=\left(p \circ p_{-1}^{1}\right)^{-1}(H)$ is a hypersurface of W passing through w_{0} which is transversal to Ch (\bar{N}) around w_{0}. Hence, for every solution S of W satifying $T_{w_{0}}(S) \subset \psi\left(x_{0}\right)$, $S^{\prime}=S \cap \hat{H}$ is an ($n-1$)-dimensional integral manifold of (W, \bar{N}). We call S^{\prime} an initial manifold of S. Thus our problem in this case is to find every initial manifold S^{\prime} in \hat{H} passing through w_{0}. Now the integration of S^{\prime} is carried out by the following steps.
(1) Find a maximal integral manifold Σ of (\hat{H}, \hat{C}) such that w_{0} $\in \Sigma$ and $\bar{N}\left(w_{0}\right) \cap T_{w_{0}}(\Sigma)=\psi\left(x_{0}\right) \cap T_{w_{0}}(\hat{H})$, where $\hat{C}=\left.C\right|_{H}$.

Then we see that $\operatorname{dim} \Sigma=2 n-2$ and that $\hat{N}=\left.\bar{N}\right|_{\Sigma}$ is a differential system of codimension 1 on Σ such that $\operatorname{Ch}(\hat{N})$ is a subbundle of \hat{N} of codimension $2(n-2)$ around w_{0}.
(2) Find a maximal integral manifold S^{\prime} of (Σ, \hat{N}) such that w_{0} $\in S^{\prime}$ and $T_{w_{0}}\left(S^{\prime}\right) \subset \mathrm{Ch}(C)\left(w_{0}\right)=\{0\}$.

Then S^{\prime} is an initial manifold in \hat{H}. Conversely every initial manifold S^{\prime} can be obtained in this way.

References

[1] E. Cartan: Les systèmes de pfaff à cinq variables et les équations aux derivées partielles du second ordre. Ann. Sci. ÉcoleNorm. Sup. (3), 27, 109-192 (1910).
[2] --: Sur les systèmes en involution d'équations aux derivées partielles. du second ordre à une fonction inconnue de trois variables indépendantes. Bull. Soc. Math. France, 39, 352-443 (1911).
[3] K. Yamaguchi: Contact geometry of higher order. Japan. J. Math. (new series), 8(1), 109-176 (1982).

