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1. Introduction. In this note, we will study the difference equa-
tion of order n"

(1.1) any(x+n)+cn_ly(x+n-1)+ +cly(x+l)-R(y(x)),
where R(w) is a rational function of w"

(R(w)=P(w)/Q(w),
(1.2) P(w)=awP+ +a,W+ao,

[Q(w)=bqwq+ +bw+bo,
in which c,...,a;a,...,a0; b,..., b0 are consts, and anab=/=O.
P(w) and Q(w) are supposed to be mutually prime. In the below, we
denote by p and q the degrees of the nominator P(w) and of the de-
nominator Q(w), respectively. We put
(1.3) qo-max (p, q).

When n-1, the equation (1.1) reduces to
(1.4) y(x+ 1)-R(y(x)).
Some properties of meromorphic solutions of (1.4) are studied in [1]-
[3]. Especially, we proved in [2, p. 311, Theorem 1], that

(1.5) any meromorphic solution of (1.4) is transcendental and
[of order oo in the sense of Nevanlinna, if q0>__2.

(1.5) is not valid if n>l, but we proved in [4],
Proposition 1. When p>q, then any meromorphic solution of

(1.1) is transcendental.
Proposition 2. When p>q+l, then any meromorphic solution

of (1.1) is of order oo in the sense of Nevanlinna.
Proposition 3. When qo>n, then any meromorphic solution of

(1.1) is transcendental and of order oo in the sense of Nevanlinna.
We will show that Propositions 1-3 are exact, i.e.,
Theorem 1. Suppose p <_ q<_n. Then there is an equation of the

form (1.1) which admits a rational solution.
Theorem 2. Suppose p=q+ l <__n. Then there is an equation of

the form (1.1) which admits a transcendental solution of finite order.
Theorem 3. Suppose p<=qn. Then there is an equation of the

form (1.1) which admits a transcendental solution of finite order.
Further, we will show
Theorem 4. For any p, q, and n, there is an equation of the form
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(1.1) any solution of which is transcendental and of order c, supposed
that q02.

In Theorems 2-4, we mean by order the one in the sense of
Nevanlinna. Now, suppose that n and R(w) be given, and put

E=[(I, -.., a); equation (1.1) has a rational solution
or a solution o finite order}.

Then we conjecture that the set E would be very small, e.g., it would
be of the first Baire category in Cn, supposed that q02.

2. Proof of Theorem 1. Put
L(w)= (2w+ l) / (-- w).

Then the equation
y(x/l)=L(y(x))

possesses a rational solution
(2.1) y(x)= (x- 1) / (-- x+2).
Obviously, the k-th iteration L(w) o L(w) is written as

L(w)=[(k-+-l)w+k]/[--kw/(1-k)], k=l, 2,
Choose a,, ..., a_, a such that a.. "a_an:/:0 and, if we write

onLn(W)-o_L-(w) +... +oL(w) P(w)/ Q(w),
then P(w) and Q(w) are mutually prime, and urther that deg [P]=p,
deg [Q]=q. Such choice is obviously possible. Then y(x) in (2.1) is
also a solution of the equation

OnY(X+n)--o_y(x+ q--1)- +oy(x+ 1)= P(y(x)) / Q(y(x)),
which is an equation o2 the type desired.

:. Proof of Theorem 2. Let p be a primitive n-th root o 1.
Put

L(w)=pw/(w+l).
Then, the k-th iteration L(w) of L(w) is written as

L(w)=pw/{[(p-l)/(p-1)]w+l} i kn,
L(w)=w.

Of course, q

oL(w) +... +oL(w) P(w) / Q(w),
then P(w) and Q(w) are mutually prime polynomials of degree q.
Such a choice is possible, obviously. Let y(x) be a solution of the
equation
(3.1) y(x+ 1)= L(y(x)).
y(x) can be taken as a function of rder 1. Then y(x) is also a solu-
tion o the equation

(3.2) {oy(x-- n)-- oqy(x-- q) +
OnY(X) -- Pl(y(x)) / Q(y(x))= P(y(x)) / Q(y(x)),

which is an equation to be required, i.e.,
deg [P] deg [Q] + 1-- q+1.

4. Proof of Theorem :. Let a be a primitive (n/ 1)-th root of
1. Put
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(5.1)
Put

L(w)=aw/(w+l).
Then

L’(w)=a"w/[ a’---1- w+l] k=l ..., n.
La--1

Choose a, a_, ..., a such that aa_...a:/:O and, if we write
onL(w)+ aq_,Lq-(w) +... +mL(w)-- P(w) / Q(w),

then P(w) and Q(w) are mutually prime, and urther that deg [P]=p,
deg [Q]=q. Such a choice is obviously pssible, and we obtain an
equation desired, as in 2 and 3.

Proof of Theorem 4. Consider the equation
y(x+n)--R(y(x)).

y(nt)--z(t).
Then
(5.2) z(t/ 1)= y(nt/n)= R(y(nt))= R(z(t)),
and z(t) is o2 order c by [2, p. 311, Theorem 1]. Thus y(x) is also o
order .

6. A final remark. We conjecture that the equation (1.1) pos-
sesses a rational solution or a transcendental solution o finite order
if and only if it shares a solution with an equation of the form

y(x+ 1) [ay(x) + b] / [cy(x) + d],
where a, b, c, d are consts, ad-bc:/:O.
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