79. Meromorphic Solutions of Some Difference Equations of Higher Order. II

By Niro Yanagihara
Department of Mathematics, Chiba University
(Communicated by Kôsaku Yosida, m. J. A., Sept. 13, 1982)

1. Introduction. In this note, we will study the difference equation of order n :
(1.1) $\quad \alpha_{n} y(x+n)+\alpha_{n-1} y(x+n-1)+\cdots+\alpha_{1} y(x+1)=R(y(x))$, where $R(w)$ is a rational function of w :

$$
\left\{\begin{array}{l}
R(w)=P(w) / Q(w), \tag{1.2}\\
P(w)=a_{p} w^{p}+\cdots+a_{1} w+a_{0}, \\
Q(w)=b_{q} w^{q}+\cdots+b_{1} w+b_{0},
\end{array}\right.
$$

in which $\alpha_{n}, \cdots, \alpha_{1} ; a_{p}, \cdots, a_{0} ; b_{q}, \cdots, b_{0}$ are consts, and $\alpha_{n} a_{p} b_{q} \neq 0$. $P(w)$ and $Q(w)$ are supposed to be mutually prime. In the below, we denote by p and q the degrees of the nominator $P(w)$ and of the denominator $Q(w)$, respectively. We put

$$
\begin{equation*}
q_{0}=\max (p, q) \tag{1.3}
\end{equation*}
$$

When $n=1$, the equation (1.1) reduces to
(1.4)

$$
y(x+1)=R(y(x))
$$

Some properties of meromorphic solutions of (1.4) are studied in [1][3]. Especially, we proved in [2, p. 311, Theorem 1], that
\{any meromorphic solution of (1.4) is transcendental and lof order ∞ in the sense of Nevanlinna, if $q_{0} \geqq 2$.
(1.5) is not valid if $n>1$, but we proved in [4],

Proposition 1. When $p>q$, then any meromorphic solution of (1.1) is transcendental.

Proposition 2. When $p>q+1$, then any meromorphic solution of (1.1) is of order ∞ in the sense of Nevanlinna.

Proposition 3. When $q_{0}>n$, then any meromorphic solution of (1.1) is transcendental and of order ∞ in the sense of Nevanlinna.

We will show that Propositions 1-3 are exact, i.e.,
Theorem 1. Suppose $p \leqq q \leqq n$. Then there is an equation of the form (1.1) which admits a rational solution.

Theorem 2. Suppose $p=q+1 \leqq n$. Then there is an equation of the form (1.1) which admits a transcendental solution of finite order.

Theorem 3. Suppose $p \leqq q \leqq n$. Then there is an equation of the form (1.1) which admits a transcendental solution of finite order.

Further, we will show
Theorem 4. For any p, q, and n, there is an equation of the form
(1.1) any solution of which is transcendental and of order ∞, supposed that $q_{0} \geqq 2$.

In Theorems 2-4, we mean by order the one in the sense of Nevanlinna. Now, suppose that n and $R(w)$ be given, and put

$$
\begin{aligned}
& E=\left\{\left(\alpha_{1}, \cdots, \alpha_{n}\right) ;\right. \text { equation (1.1) has a rational solution } \\
&\text { or a solution of finite order }\} .
\end{aligned}
$$

Then we conjecture that the set E would be very small, e.g., it would be of the first Baire category in C^{n}, supposed that $q_{0} \geqq 2$.
2. Proof of Theorem 1. Put

$$
L(w)=(2 w+1) /(-w)
$$

Then the equation

$$
y(x+1)=L(y(x))
$$

possesses a rational solution

$$
\begin{equation*}
y(x)=(x-1) /(-x+2) . \tag{2.1}
\end{equation*}
$$

Obviously, the k-th iteration $L^{k}(w)$ of $L(w)$ is written as

$$
L^{k}(w)=[(k+1) w+k] /[-k w+(1-k)], \quad k=1,2, \cdots .
$$

Choose $\alpha_{1}, \cdots, \alpha_{q-1}, \alpha_{n}$ such that $\alpha_{1} \cdots \alpha_{q-1} \alpha_{n} \neq 0$ and, if we write

$$
\alpha_{n} L^{n}(w)+\alpha_{q-1} L^{q-1}(w)+\cdots+\alpha_{1} L(w)=P(w) / Q(w)
$$

then $P(w)$ and $Q(w)$ are mutually prime, and further that $\operatorname{deg}[P]=p$, $\operatorname{deg}[Q]=q$. Such choice is obviously possible. Then $y(x)$ in (2.1) is also a solution of the equation

$$
\alpha_{n} y(x+n)+\alpha_{q-1} y(x+q-1)+\cdots+\alpha_{1} y(x+1)=P(y(x)) / Q(y(x))
$$

which is an equation of the type desired.
3. Proof of Theorem 2. Let ρ be a primitive n-th root of 1 .

Put

$$
L(w)=\rho w /(w+1)
$$

Then, the k-th iteration $L^{k}(w)$ of $L(w)$ is written as

$$
\begin{aligned}
& L^{k}(w)=\rho^{k} w /\left\{\left[\left(\rho^{k}-1\right) /(\rho-1)\right] w+1\right\} \quad \text { if } k<n, \\
& L^{n}(w)=w .
\end{aligned}
$$

Of course, $q<n$. Choose $\alpha_{1}, \cdots, \alpha_{q}$ such that $\alpha_{1} \cdots \alpha_{q} \neq 0$ and, if

$$
\alpha_{q} L^{q}(w)+\cdots+\alpha_{1} L(w)=P_{1}(w) / Q(w)
$$

then $P_{1}(w)$ and $Q(w)$ are mutually prime polynomials of degree q. Such a choice is possible, obviously. Let $y(x)$ be a solution of the equation

$$
\begin{equation*}
y(x+1)=L(y(x)) \tag{3.1}
\end{equation*}
$$

$y(x)$ can be taken as a function of order 1. Then $y(x)$ is also a solution of the equation

$$
\left\{\begin{array}{l}
\alpha_{n} y(x+n)+\alpha_{q} y(x+q)+\cdots+\alpha_{1} y(x+1) \tag{3.2}\\
\quad=\alpha_{n} y(x)+P_{1}(y(x)) / Q(y(x))=P(y(x)) / Q(y(x))
\end{array}\right.
$$

which is an equation to be required, i.e.,

$$
\operatorname{deg}[P]=\operatorname{deg}[Q]+1=q+1
$$

4. Proof of Theorem 3. Let σ be a primitive $(n+1)$-th root of 1. Put

$$
L(w)=\sigma w /(w+1)
$$

Then

$$
L^{k}(w)=\sigma^{k} w /\left[\frac{\sigma^{k}-1}{\sigma-1} w+1\right], \quad k=1, \cdots, n
$$

Choose $\alpha_{n}, \alpha_{q-1}, \cdots, \alpha_{1}$ such that $\alpha_{n} \alpha_{q-1} \cdots \alpha_{1} \neq 0$ and, if we write

$$
\alpha_{n} L^{n}(w)+\alpha_{q-1} L^{q-1}(w)+\cdots+\alpha_{1} L(w)=P(w) / Q(w)
$$

then $P(w)$ and $Q(w)$ are mutually prime, and further that $\operatorname{deg}[P]=p$, $\operatorname{deg}[Q]=q . \quad$ Such a choice is obviously possible, and we obtain an equation desired, as in $\S \S 2$ and 3.
5. Proof of Theorem 4. Consider the equation

$$
\begin{equation*}
y(x+n)=R(y(x)) \tag{5.1}
\end{equation*}
$$

Put

$$
y(n t)=z(t)
$$

Then

$$
\begin{equation*}
z(t+1)=y(n t+n)=R(y(n t))=R(z(t)) \tag{5.2}
\end{equation*}
$$

and $z(t)$ is of order ∞ by [2, p. 311, Theorem 1]. Thus $y(x)$ is also of order ∞.
6. A final remark. We conjecture that the equation (1.1) possesses a rational solution or a transcendental solution of finite order if and only if it shares a solution with an equation of the form

$$
y(x+1)=[a y(x)+b] /[c y(x)+d]
$$

where a, b, c, d are consts, $a d-b c \neq 0$.

References

[1] S. Shimomura: Entire solutions of a polynomial difference equation. Jour. Fac. Sci., Univ. Tokyo, Sec. IA, IE, 253-266 (1981).
[2] N. Yanagihara: Meromorphic solutions of some difference equations. Funkcial. Ekvac., 23, 309-326 (1980).
[3] -: Ditto II. ibid., 24, 113-124 (1981).
[4] -: Meromorphic solutions of some difference equations of higher order. Proc. Japan Acad., 58A, 21-24 (1982).

