99. Characterization of Extremely Amenable Semigroups with a Unique Invariant Mean

By Koukichi SAKAI

Department of Mathematics, Kagoshima University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1982)

§ 1. Introduction. Let S be an abstract semigroup and m(S)the Banach space of all bounded real functions on S with the supremum norm. Let ψ be a mean on S i.e., ψ is a linear functional on m(S)such that $\|\psi\| = \psi(I_s) = 1$, where in general I_A is the characteristic function of any subset A of S. ψ is called *multiplicative* if $\psi(fg) = \psi(f)\psi(g)$ for any $f, g \in m(S)$. ψ is said to be left [right] invariant if $\psi(f)$ $=\psi(s)[\psi(f)=\psi(f_s)]$ for any $f \in m(S)$ and $s \in S$, where sf(t)=f(st) and $f_s(t) = f(ts)$ $(t \in S)$. By LM(S)[RM(S)] we denote the set of all left [right] invariant means on S, and by MLM(S)[MRM(S)] denote the set of all multiplicative left [right] invariant means on S. Any element in $LM(S) \cap RM(S)$ is called an *invariant mean* on S. We say that S is left [right] amenable if LM(S) [RM(S)] $\neq \phi$ (empty). In particular S is called extremely left [right] amenable if $MLM(S)[MRM(S)] \neq \phi$. Further S is called *extremely amenable* if $MLM(S) \cap MRM(S) \neq \phi$. It is proved in Granirer [2] that S is extremely left amenable if and only if it has the following property:

(CRZ) For any $a, b \in S$ there exists $c \in S$ such that ac=bc=c. Suppose now S is extremely left amenable. Let us introduce a pseudoorder relation " \leq " in S defined as follows: For any $a, b \in S, a \leq b$ if either a=b or ab=b. Then by virtue of (CRZ), (S, \leq) is regarded as a directed set. A subset A of S is called *cofinal* (with respect to \leq) if for any given $s \in S$ there exists $t \in A$ such that $s \leq t$. For any fixed $p \in S$ we denote by δ_p a mean on S defined by $\delta_p(f) = f(p)$ ($f \in m(S)$).

The purpose of this paper is to prove the following theorems concerning semigroups with a unique multiplicative invariant mean.

Theorem 1. Let S be extremely left amenable. The following conditions for S are equivalent:

(1) S admits a unique multiplicative left invariant mean.

(2) S admits a unique left invariant mean.

(3) For any subset A of S there exists $t \in S$ such that either $tS \subseteq A$ or $tS \cap A = \phi$.

(4) S has the property that if a subset A of S satisfies $sS \cap A \neq \phi$ for all $s \in S$, then $tS \subseteq A$ for some $t \in S$.

(5) Every cofinal subset of (S, \leq) contains at least one right ideal in S.

(6) S has the zero element.

Theorem 2. The following conditions for S are equivalent:

- (1) S admits a unique multiplicative left invariant mean.
- (2) S admits a unique multiplicative right invariant mean.
- (3) S admits a unique multiplicative invariant mean.
- (4) S has the zero element.

Theorem 3. Let S be extremely left amenable and right amenable. If MLM (S) is a finite set, then S has the zero element.

§2. Proof. Proof of Theorem 1. As shown in Granirer [3, Theorem 6], if S is extremely left amenable, every extreme point of the w^* -compact convex subset LM(S) in $m(S)^*$ is in MLM(S). So we have $(1)\Rightarrow(2)$. Suppose (2), and let $MLM(S)=LM(S)=\{\psi\}$. Then we see from Corollary 4 in Granirer [4, p. 68] that ψ must be given in the form

$$\psi(f) = \inf_{t \in S} \sup_{s \in S} f(ts) = \sup_{t \in S} \inf_{s \in S} f(ts) \qquad (f \in m(S)).$$

If $\psi(I_A) = 1$ for $A \subseteq S$, sup inf $I_A(ts) = 1$, which implies $tS \subseteq A$ for some $t \in S$. Since ψ is multiplicative, $\psi(I_A) = 1$ or $\psi(I_S - I_A) = 1$ for any subset A of S. Hence $(2) \Rightarrow (3)$. $(3) \Rightarrow (4)$ is obvious. Suppose (4), and let A be any cofinal subset of (S, \leq) and $s \in S$. If $w \in sS \setminus A$, then there exists $t \in A$ with $w \le t$. As $w \ne t$, we have $t = wt \in sS \cap A$. That is, $A \cap sS \neq \phi$ for all $s \in S$, and $tS \subseteq A$ for some $t \in S$ by (4). So (4) \Rightarrow (5). Suppose (5). Then we note that the family of all cofinal subsets in (S, \leq) has the finite intersection property, because so has the family of all right ideals in S. If S does not contain a finite cofinal subset, it follows from Theorem of I. S. Luthar in Granirer [1, p. 372] that Scontains at least two cofinal subsets which are disjoint. But this is impossible in our case. Hence there exists a finite cofinal subset A of (S, \leq) . Let us take $p \in A$ such that $a \leq p$ for all $a \in A$. Then the singleton $\{p\}$ is also cofinal, and $\{p\} = tS$ for some $t \in S$ by (5). Therefore p is the zero element in S. Thus $(5) \Rightarrow (6)$. Finally $(6) \Rightarrow (1)$ is evident.

Remark to Theorem 1. Suppose that S is extremely left amenable and satisfies (3) in Theorem 1. Let us consider a set function μ on the family of all subsets of S defined as follows: For any $A \subseteq S$, $\mu(A)=1$ if $tS \subseteq A$ for some $t \in S$, and $\mu(A)=0$ if $A \cap tS = \phi$ for some $t \in S$. Then we see that μ is a finitely additive probability measure on S and satisfies $\mu(A)=\mu(s^{-1}A)$ for any $A \subseteq S$ and $s \in S$, where $s^{-1}A=\{t \in S; st \in A\}$. Moreover the linear functional on m(S) determined by μ is a unique multiplicative left invariant mean on S. Therefore (1) in Theorem 1 is derived directly from (3). **Proof of Theorem 2.** Combining Theorem 1 with its right dual case, we see that (1), (2) and (4) in Theorem 2 are mutually equivalent. Suppose (3), and let $MLM(S) \cap MRM(S) = \{\psi\}$. By slight modification of discussions in [4], we conclude that ψ must be given in the form

 $\psi(f) = \inf_{t,u \in S} \sup_{s \in S} f(tsu) = \sup_{t,u \in S} \inf_{s \in S} f(tsu) \qquad (f \in m(S)).$

On the other hand, since S is extremely amenable, it is regarded as a directed set with respect to a partial order relation "(r)" in S defined as follows: For any a, b in S, a(r)b if either a=b or ab=ba=b. Making use of these facts, we see by the same way as in the proof of Theorem 1 that S has the zero element.

Proof of Theorem 3. Let $\psi \in RM(S)$. If MLM(S) is a finite set, it follows from Theorem 1 in [1] that S has at least one right zero p. Since $f_p = f(p)I_s$ for $f \in m(S)$, we have $\psi(f) = \psi(f_p) = f(p)\psi(I_s) = f(p)$ and $f(ps) = f_s(p) = \psi(f_s) = \psi(f) = f(p)$ for any $f \in m(S)$ and $s \in S$. Hence p is the zero in S.

Remarks to Theorem 3. 1) In Theorem 3 we can not drop the assumption that S is right amenable. For example let S be a right zero semigroup of finite order $n \ge 2$. Then MLM(S) consists exactly of n elements, and $RM(S) = \phi$.

2) As consequences of Theorem 3 and Theorem 2 in [1], we have the following assertions:

(a) MLM(S) consists of n elements $(1 \le n < \infty)$ if and only if the set RZ(S) of all right zeros in S contains exactly n elements. In this case $MLM(S) = \{\delta_n; p \in RZ(S)\}$.

(b) If MLM(S) is a finite set containing at least two elements, then S is not right amenable.

§ 3. A generalization of Theorem 1. Let (S, X) be a left action of S on a space X, and m(X) the Banach space of all bounded real functions on X with the supremum norm. A mean ψ on X (cf. § 1) is called S-invariant if $\psi({}_sf)=\psi(f)$ for any $f \in m(X)$ and $s \in S$, where ${}_sf(x)=f(sx)(x \in X)$. We say that (S, X) is [extremely] S-amenable if there exists a [multiplicative] S-invariant mean on X. As noted in [6, Theorem 2.6], (S, X) is [extremely] S-amenable if S is [extremely] left amenable. If (S, X) is S-amenable, then the family $\{sX; s \in S\}$ of subsets in X has the finite intersection property. Further if S is extremely left amenable, every extreme point of the w*-compact convex subset of all S-invariant means in $m(X)^*$ is multiplicative (cf. [5, p. 427]). Making use of these facts and results stated in [7, §§ 3–4], we have the following theorem, which is a natural generalization of Theorem 1.

Theorem 4. Let S be extremely left amenable, and (S, X) be a left action of S on a space X. The following conditions for (S, X) are equivalent:

- (1) (S, X) admits a unique multiplicative S-invariant mean.
- (2) (S, X) admits a unique S-invariant mean.

(3) For any subset Y of X there exists $s \in S$ such that either $sX \subseteq Y$ or $sX \cap Y = \phi$.

(4) (S, X) has the property that if a subset Y of X satisfies $sX \cap Y \neq \phi$ for all $s \in S$, then $tX \subseteq Y$ for some $t \in S$.

Moreover assume that $\cap \{sX; s \in S\}$ is nonempty. Then the above conditions are equivalent to:

(5) There exists a unique point $p \in X$ such that p = sp = tX for all $s \in S$ and some $t \in S$.

References

- E. E. Granirer: A theorem on amenable semigroups. Trans. Amer. Math. Soc., 111, 367-379 (1964).
- [2] ——: Extremely amenable semigroups. Math. Scand., 17, 177-197 (1965).
- [3] ——: ditto. II. ibid., 20, 93–113 (1967).
- [4] ——: Functional analytic properties of extremely amenable semigroups. Trans. Amer. Math. Soc., 137, 53-75 (1969).
- [5] K. Sakai: Extremely amenable transformation semigroups. Proc. Japan Acad., 49, 424-427 (1973).
- [6] ——: On amenable transformation semigroups I. J. Math. Kyoto Univ., 16, 555-595 (1976).
- [7] ——: ditto. IV. Sci. Rep. Kagoshima Univ., 31, 1-19 (1982).

360