Proc. Japan Acad., 58, Ser. A (1982)

No. 8]

98. On the Pathwise Uniqueness of Solutions of One-Dimensional Stochastic Differential Equations of Jump Type

By Takashi KOMATSU

Department of Mathematics, Osaka City University

(Communicated by Kôsaku YOSIDA, M. J. A., Oct. 12, 1982)

1. Introduction. Many authors discussed the pathwise uniqueness of solutions for one-dimensional stochastic differential equations of diffusion type

(1) $dX_t = \sigma(X_t)dB_t$ B_t : a Brownian motion. Among others, Yamada and Watanabe [1] showed that the pathwise uniqueness holds if $|\sigma(x) - \sigma(y)|^2 \leq \rho(|x-y|)$ for all x and y in \mathbb{R}^1 for an increasing function $\rho(x)$ satisfying $\rho(0) = 0$ and

$$\int_{+0} \rho(x)^{-1} dx = \infty.$$

Nakao [2] gave another condition for the pathwise uniqueness.

In the present paper, we shall discuss the pathwise uniqueness of solutions for stochastic differential equations of jump type

$$(2) dX_i = \sigma(X_{i-}) dZ_i,$$

where Z_i is a symmetric stable process of exponent α (0< α <2) associated with the generator L defined by

(3)
$$Lf(x) = \int [f(x+y) - f(x) - I_{(|y| \le 1)} y f'(x)] |y|^{-1-\alpha} dy.$$

Our results are similar to the result in [1]. For example, in case $1 < \alpha < 2$, the pathwise uniqueness will be proved under the condition that there exists an increasing function $\rho(x)$ such that $\rho(0)=0$,

$$\int_{+0} \rho(x)^{-1} dx = \infty$$

and $|\sigma(x) - \sigma(y)|^* \leq \rho(|x-y|)$ for all x and y in \mathbb{R}^1 . An example will be given which shows that the condition is nearly best possible without some additional conditions. But the condition can be relaxed in the case where $1 < \alpha < (1 + \sqrt{5})/2$ and the function $\sigma(x)$ is uniformly positive.

2. Main theorems. Let (Ω, F, P) be a probability space with an increasing family $(F_t)_{t\geq 0}$ of sub- σ -fields of F. Let Z_t be a one-dimensional symmetric stable process with exponent α whose generator L is given by (3). We suppose $Z_0=0$. The measure

$$p(dt, dz) = \sum_{s \in dt} I_{(dz_s \in dz \setminus \{0\})}$$

is called the Poisson random measure associated with the process Z_i .

Let $q(dt, dz) = p(dt, dz) - |z|^{-1-\alpha} dt dz$ and $\sigma(x)$, a Borel measurable function on \mathbb{R}^1 . We shall consider the equation

(4)
$$X_t = x_0 + \int_0^t \int_{|z| \le 1} \sigma(X_{s-}) zq(ds, dz) + \int_0^t \int_{|z| > 1} \sigma(X_{s-}) zp(ds, dz),$$
which is simply written as (2).

Theorem 1. Let $1 < \alpha < 2$ and $\rho(x)$, an increasing function on $[0, \infty)$ satisfying $\rho(0)=0$ and

 $\int_{+0} \rho(x)^{-1} dx = \infty.$

If

 $|\sigma(x) - \sigma(y)|^{\alpha} \leq \rho(|x-y|)$ for all x, y in \mathbb{R}^{1} , then there is at most one solution of (4) for each initial value.

Proof. Similarly to [1], define a sequence $1 = a_0 > a_1 > \cdots$ by

$$\rho(x)^{-1}dx = n.$$

Choose smooth even functions $\phi_n(x)$ on \mathbf{R}^1 such that

$$\int_{-\infty}^{+\infty}\phi_n(x)dx=1,$$

$$\phi_n(x) = 0 ext{ for } |x| \leq a_n ext{ or } |x| \geq a_{n-1} ext{ and}$$

(5) $0 \leq \phi_n(x) \leq rac{1}{n
ho(|x|)}$ for $a_n < |x| < a_{n-1}$.

Set $u(x) = |x|^{\alpha-1}$ and $u_n = u * \phi_n$. Since ϕ_n tends to the δ -function at the origin, the function $u_n(x)$ tends to the function u(x) as $n \to \infty$. We shall show that $Lu_n = c\phi_n$ with a certain constant c independent of n, where L is the operator defined by (3). Let $u^*(x) = |x|^{\alpha-1} e^{-\epsilon|x|}$ ($\epsilon > 0$) and set $u_n^* = u^* * \phi_n$. The function u_n^* belongs to the space $S(\mathbb{R}^1)$ of tempered functions. Let \mathcal{F} and \mathcal{F}^{-1} denote the Fourier transform and the inverse Fourier transform respectively. Then $Lf = -c_1 \mathcal{F}^{-1}[|\xi|^{\alpha} \mathcal{F}f]$ for each tempered function f, where $c_1 = \pi(\Gamma(\alpha+1) \sin(\alpha\pi/2))^{-1}$. Since $\mathcal{F}u_n^*(\xi) = \Gamma(\alpha) \{(\epsilon+i\xi)^{-\alpha} + (\epsilon-i\xi)^{-\alpha}\} \mathcal{F}\phi_n(\xi) \text{ and } |\xi|^{\alpha} \{(\epsilon+i\xi)^{-\alpha} + (\epsilon-i\xi)^{-\alpha}\}$ tends to $2 \cos(\alpha\pi/2)$ as $\epsilon \downarrow 0$ for $\xi \neq 0$, we have

$$Lu_n = \lim_{\epsilon \downarrow 0} Lu_n^{\epsilon} = -\lim_{\epsilon \downarrow 0} c_1 \Gamma(\alpha) \mathcal{F}^{-1}[|\xi|^{lpha} \mathcal{F} u_n^{\epsilon}(\xi)]
onumber \ = -\lim_{\epsilon \downarrow 0} c_1 \Gamma(\alpha) \mathcal{F}^{-1}[|\xi|^{lpha} \{(\varepsilon + i\xi)^{-lpha} + (\varepsilon - i\xi)^{-lpha}\} \mathcal{F} \phi_n(\xi)]
onumber \ = -2\pi lpha^{-1} \cot(lpha \pi/2) \phi_n = c \phi_n.$$

Let X_t^1 and X_t^2 be any solutions of (4) with the same initial value. Then we have

$$\begin{split} u_n(X_t^1 - X_t^2) &- u_n(0) \\ &= \int_0^t \int |\sigma(X_s^1) - \sigma(X_s^2)|^{\alpha} L u_n(X_s^1 - X_s^2) ds \\ &+ \int_0^t \int [u_n(X_{s-}^1 - X_{s-}^2 + (\sigma(X_{s-}^1) - \sigma(X_{s-}^2))z) - u_n(X_{s-}^1 - X_{s-}^2)] q(ds, dz). \\ \text{Set } T_k &= \inf \{t \, ; \, |X_t^1 - X_t^2| > k\}. \quad \text{Since} \\ &|\sigma(x) - \sigma(y)|^{\alpha} L u_n(x - y) \leq c \rho(|x - y|) \phi_n(x - y) \leq c/n \end{split}$$

by (5), it follows that

$$E[u_n(X_{t\wedge T_k}^1-X_{t\wedge T_k}^2)] \leq u_n(0) + E\left[\int_0^{t\wedge T_k} \frac{c}{n} ds\right].$$

Therefore we have

$$E[|X_{t\wedge T_k}^1-X_{t\wedge T_k}^2|^{\alpha-1}]=0,$$

because $u_n(x) \rightarrow u(x) = |x|^{\alpha-1}$ as $n \rightarrow \infty$. Since $P[T_k < t] \rightarrow 0$ as $k \rightarrow \infty$, we conclude that $X_t^1 = X_t^2$ a.e.

Theorem 2. Let $0 \le \alpha \le 1$ and $\rho(x)$, a function as in Theorem 1. Moreover we assume that $\rho(x)$ is concave. If $|\sigma(x) - \sigma(y)| \le \rho(|x-y|)$ is satisfied for all x and y in \mathbf{R}^{i} , then the solution of (4) is uniquely determined for each initial value.

Proof. Let $\psi_n(x) = \sqrt{n/2\pi} \exp(-nx^2/2)$ and set v(x) = |x| and $v_n = v * \psi_n$. As in the proof of Theorem 1, it is proved that there is a positive constant c such that $Lv_n = c |x|^{1-\alpha} * \psi_n$. Let X_t^1 and X_t^2 be any solutions of (4) with the same initial value. Set $Y_t = X_t^1 - X_t^2$ and $T_k = \inf\{t; |Y_t| > k\}$. Similarly to the proof of Theorem 1, we have

$$E[v_n(Y_{t\wedge T_k})] \leq v_n(0) + E\left[\int_0^{t\wedge T_k} \rho(|Y_s|)^{\alpha} Lv_n(Y_s) ds\right]$$

Since $v_n(x) \rightarrow |x|$ and $Lv_n \rightarrow c |x|^{1-\alpha}$ as $n \rightarrow \infty$, it follows that

$$E[|Y_{t\wedge T_k}|] \leq c E\left[\int_0^{t\wedge T_k} \rho(|Y_s|)^{\alpha} |Y_s|^{1-\alpha} ds\right].$$

Since $\rho(|y|)^{\alpha}|y|^{1-\alpha} \leq \alpha \rho(|y|) + (1-\alpha)|y|$ and $\rho(x)$ is concave, the function $h(t) = E[|Y_{t \wedge T_k}|]$ satisfies the integral inequality

$$h(t) \leq c \int_0^t \left[\alpha \rho(h(s)) + (1-\alpha)h(s) \right] ds.$$

This implies that

$$h(t) \leq c \alpha \int_0^t e^{c(1-\alpha)(t-s)} \rho(h(s)) ds.$$

Since

$$\int_{+0} \rho(x)^{-1} dx = \infty,$$

we have h(t)=0, and therefore $Y_{t \wedge T_k}=0$ a.e. Hence $Y_t=0$ a.e. because $P[T_k < t] \rightarrow 0$ as $k \rightarrow \infty$.

3. Complementary results. Let
$$0 < \beta < \alpha \land 1$$
. Then
(6) $E\left[\int_{0}^{t} |Z_{s}|^{-\beta} ds\right] < \infty$.

 \mathbf{Set}

$$T(t) = \int_{0}^{t} |Z_{s}|^{-\beta} ds \text{ and } T^{-1}(\tau) = \inf \{t; T(t) > \tau\},$$

and define

$$\zeta_{\tau} = \int_{0}^{T-1(\tau)} \int_{|z| \leq |Z_{s}|^{\beta/\alpha}} |Z_{s}|^{-\beta/\alpha} zq(ds, dz) \\ + \int_{0}^{T-1(\tau)} \int_{|z| > |Z_{s}|^{\beta/\alpha}} |Z_{s}|^{-\beta/\alpha} zp(ds, dz).$$

No. 8]

The process ζ_{τ} $(0 \leq \tau < T(+\infty))$ is well defined because of (6). It is easy to show that the process $\{\Omega, F, F_{T^{-1}(\tau)}, P; \zeta_{\tau}\}$ is an α -stable process with the generator L, and the process $X_{\tau} = Z_{T^{-1}(\tau)}$ is a solution of the equation: $dX_{\tau} = |X_{\tau^{-1}}|^{\beta/\alpha} d\zeta_{\tau}, X_{0} = 0$. Namely the equation has a nontrivial solution besides the trivial one. Hence we have proved the following.

Proposition. Consider equation (4) for the coefficient $\sigma(x) = |x|^{\gamma}$ and the initial value $x_0 = 0$. Then the pathwise uniqueness holds or not according as $1 \wedge \alpha^{-1} \leq \gamma$ or $0 < \gamma < 1 \wedge \alpha^{-1}$.

This result corresponds with the following one obtained by Girzanov [3] that if $0 < \gamma < 1/2$, then the stochastic equation $dX_t = |X_t|^r dB_t$ with $X_0 = 0$ has infinitely many solutions.

Nakao [2] proved that the pathwise uniqueness holds for (1) if the function $\sigma(x)$ is uniformly positive on \mathbf{R}^{i} and if $\sigma(x)$ is of bounded variation on any compact interval.

Theorem 3. Let $1 < \alpha < 2$. The pathwise uniqueness holds for (4) if there are positive constants λ_1, λ_2 , c and δ such that $\lambda_1 \leq \sigma(x) \leq \lambda_2$ for all x in \mathbb{R}^1 and that

 $|\sigma(x) - \sigma(y)| \leq c |x - y|^{\alpha - 1 + \delta} \quad \text{for all } x, y \text{ in } \mathbf{R}^{1}.$

Remark. If $\alpha(\alpha-1) < 1$, namely $1 < \alpha < (1+\sqrt{5})/2$, this result is not contained in Theorem 1.

Proof of Theorem 3. Define

$$v(x) = \int_0^x \sigma(y)^{-1} dy.$$

Let X_t^1 and X_t^2 be any solutions of (4) with the initial value x_0 . Then $v(X_t^i) - v(x_0) - Z_t$

$$= \int_{0}^{t} \int \left[\int_{0}^{1} \{ \sigma(X_{s-}^{i}) \sigma(X_{s-}^{i} + \sigma(X_{s-}^{i}) \theta z)^{-1} - 1 \} d\theta \right] z p(ds, dz).$$

From the assumption the process $V_i = v(X_i^1) - v(X_i^2)$ has the integrable total variation on any compact time interval. The process $M_i = X_i^1 - X_i^2$ is a martingale of jump type satisfying

(7) $\lambda_2^{-1}M_t \leq V_t \leq \lambda_1^{-1}M_t$ as long as $M_t \geq 0$.

Using a similar technique to [2], it is proved from property (7) that the martingale M_i is identically zero.

References

- T. Yamada and S. Watanabe: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ., 11, 155-167 (1971).
- [2] S. Nakao: On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka J. Math., 9, 513-518 (1972).
- [3] I. V. Girzanov: An example of non-uniqueness of the solution of the stochastic equation of K. Itô. Theory Prob. Appl., 7, 325-331 (1962) (English translation).

356