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1. Introduction. Many authors discussed the pathwise unique-
ness of solutions for one-dimensional stochastic differential equations
of diffusion type
( 1 ) dX--a(X)dB B a Brownian motion.
Among others, Yamada and Watanabe [1] showed that the pathwise
uniqueness holds if la(x)-a(y)[<__p(Ix-yl) for all x and y in R for an
increasing function p(x) satisfying p(O)----O and

p(x)-’ =oo.dx
+0

Nakao [2] gave another condition for he pahwise uniqueness.
In the presen paper, we shall discuss he pahwise uniqueness of

solutions for stochastic differential equations of jump ype
( 2 ) dXt=a(Xt_)dZt,
where Zt is a symmetric sable process of exponent a (0<a<2) asso-
ciated wih the generator L defined by

( 3 ) Lf(x)=.[ [f(x+y)--f(x)--I(ll_:)yf’(x)] [y]--" dy.

Our results are similar to the result in [1]. For example, in case
1a2, the pathwise uniqueness will be proved under the condition
that there exists an increasing function p(x) such that p(O)=O,

p(x)_dx=
+0

and [a(x)--a(y)l"<=p(Ix-yl)for all x and y in R. An example will be
given which shows that the condition is nearly best possible without
some additional conditions. But the condition can be relaxed in the
case where la(l+J-)/2 and the unction a(x) is uniformly
positive.

2. Main theorems. Let (9, F, P) be a probability spce with an
increasing family (Ft)>o o:f sub-a-fields o F. Let Z be a one-dimen-
sional symmetric stable process with exponent a whose generator L is
given by (3). We suppose Z0=0. The measure

p(dt, dz)= ,
sedt

is called the Poisson random measure associated with the process Zt.
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Let q(dt, dz)=p(dt, dz)-Izl-- dtdz and a(x), a Borel measurable func-
tion on R. We shall consider the equation

( 4 ) X-xo+ a(X,_)zq(ds, dz)+ a(X,_)zp(ds, dz),

which is simply written s (2).
Theorem 1. Le 1 <.<2 nd p(), n ineesin /unction on

+0

la(x)-a(y)l"p(Ix-yl) for all x, y in R,
then there is at most one solution of (4) for each initial value.

Proof. Similarly to [1], define a sequence l=a0>a>... by

Choose smoogh even functions () on

(x)=0 for Ix[a or lx[a_ and

np(Ixl)
Set u(x)=lxl- nd u=u,. Since tends to the -unetion at the
origin, the function u(x) tends to the unetion u(x) as n. We
shll show that Lug=c with certain constant c independent o n,
where L is the operator defined by (3). Let u’(x)=[xl-’ e-’ (e>0)
nd set u=u’,. The function u belongs to the spree
tempered unctions. Let nd- denote the Fourier transform nd
the inverse Fourier trnsorm respectively. Then Lf -e-[[["f]
or eeh tempered function f, where e=(F(a+I) sin (a/2))-’. Since
u()=F(,) {(+i)7"+(e i)-"}() nd [[" {( + i)-"+(e i)-"}
tends to 2 cos (a/2) s e 0 or 0, we hve

Lu lim Lug= lim eF(a)-[l[" u()]
0

lim cF(,)-[[l" {(e+i) + (e-- i)-}()]
2- cot (/

Let X: and X be sny solutions of (4) with the same initisl vMue. Then
we have
u(x:-x)-u(o)

.[: .[ a(X)- a(X)l" Lu(X-X])ds

Set % inf {t IX-X] >k}. Since
[a(x)- a(y)" Lu(z-y)cp(tx-yl)(x-y) e/n
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by (5), it follows that

Therefore we have

ZtAT jO

because u(x)u(x)=lx]- as n. Since P[T<t]O as k, we
conclude that X=X[ a.e.

Theorem 2. Le$ 01 and p(x), a function as in Theorem 1.
Moreover we assume tha p(x) is concave, if la(x)-a(y)lp(lx-yl) is

satisfied for all x and y in R, then the solution of (4) is uniquely de-
termined for each initial value.

Proof. Let (x)=/2 exp (--nx/2) and set v(x)=lx] and v
=V*n. AS in the proof of Theorem 1, it is proved that there is a
positive constant c such that Lvn:vlXl-,n. Let X and X[ be any
solutions of (4) with the same initial wlue. Set Y=X-X and T
=inf {t; IYlk}. Similarly to the proof of Theorem 1, we have

]
Since ()1 end BeI1- s, i follows ha

E[IYtrl]<cE 0(IY) [Y -ds
EJo

Since p(yl)lyl-p(lyl)+(1-)lyl and p(x) is concave, the function
h(t)=E[Yrl] satisfies the integral inequality

h(t) c [p(h(s)) + (1 -)h(s)]ds.
J0

This implies that

h(t) gca eO-")(-’)p(h(s))ds.

Since

p(x)_dx ,
+o

we have h(t)-O, and therefore Yr=O a.e.
P[T t]-+O as

o Complementary results. Let Oflal.
(6) E IZ,]- ds <.
Set

and define

Hence Y-0 a.e. because

Then

and T-’(r)-- inf {t T(t) >r},-- [Zl -/" zq(ds, dz)
IzllZlm

() f+ IZ I- /" zp(ds, dz).
Il>lZlm
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The process (0vT(+o)) is well defined because of (6). It is
easy to show that the process {tg, F, Fr-, P; } is an -stable process
with the generator L, and the process X--Zr- is a solution of the
equation" dX--IX_I d, Xo-O. Namely the equation has non-
trivial solution besides the trivial one. Hence we hve proved the
following.

Proposition. Consider equation (4) for the coecien$
and the initial value xo-O. Then the pathwise uniqueness holds or
not according as 1Aa-<= or 0<-<lAa-.

This result corresponds with the following one obtained by
Girzanov [3] that if 0r1/2, then the stochastic equation dX
=IX[ dB with X0=0 has infinitely many solutions.

Nakao [2] proved that the pathwise uniqueness holds for (1) if the
unction a(x) is uniformly positive on R and if a(x) is of bounded
variation on any compact interval.

Theorem 3. Let 1a2. The pathwise uniqueness holds for
(4) if there are positive constants , , c and such that
for all x in R and that

[a(x)--a(y)l_c Ix--y]"-1/ for all x, y in R1.
Remark. If a(a--1)l, namely la(l+J-)/2, this result

is not contained in Theorem 1.

Proof of Theorem 3. Define

v(x) : a(y)- dy.

Let X and X be any solutions of (4) with the initial value x0. Then
v(X)-V(Xo)-Z

From the assumption the process V=v(X)-v(X) has the integrble
totM vrition on any compact time interval. The process Mr--X-X
is a martingale of jump type stisfying
(7) 2;MtVtIMt aS long as Mt>=O.
Using a similar technique to [2], it is proved from property (7) that
the martingale M is identically zero.
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