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1. Introduction. Many authors discussed the pathwise unique-
ness of solutions for one-dimensional stochastic differential equations
of diffusion type
(1) dX,=a(X,)dB, B,: a Brownian motion.

Among others, Yamada and Watanabe [1] showed that the pathwise
uniqueness holds if |¢(x) —e(W)'<p(x—y)) for all x and y in R' for an
increasing function p(x) satisfying p(0)=0 and

jw o@)'de=co.

Nakao [2] gave another condition for the pathwise uniqueness.

In the present paper, we shall discuss the pathwise uniqueness of
solutions for stochastic differential equations of jump type
(2) dX,=o(X,)dZ,,
where Z, is a symmetric stable process of exponent a (0<a<2) asso-
ciated with the generator L defined by

(3) Lf(x)=j f@+y)—f@—1, <y f @]y« dy.

Our results are similar to the result in [1]. For example, in case
1<a<2, the pathwise uniqueness will be proved under the condition
that there exists an increasing function p(x) such that p(0)=0,

Lo (@)~ da= oo

and |o(@)—o()|*<p(ax—y)) for all x and ¥ in R'. An example will be
given which shows that the condition is nearly best possible without
some additional conditions. But the condition can be relaxed in the
case where 1<a<(14+4+/5)/2 and the function o(x) is uniformly
positive.

2. Main theorems. Let (2, F, P) be a probability space with an
increasing family (F,),», of sub-g-fields of F. Let Z, be a one-dimen-
sional symmetric stable process with exponent « whose generator L is
given by (8). We suppose Z,=0. The measure

p(dt, dz)=s§c I 4z,canion

is called the Poisson random measure associated with the process Z,.
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Let q(dt, dz)=p(dt, dz)—|z|"'~~ dtdz and o(x), a Borel measurable func-
tion on R'. We shall consider the equation

(4)  X,=a+ j j | oK, )a(ds, dz)+j: Lm o(X,)2p(ds, d2),

which is simply written as (2).
Theorem 1. Let 1<a<2 and p(x), on increasing function on
[0, o0) satisfying p(0)=0 and

Lo p(@)'de=co.

If
lo@)—eI*=p(x—y)  forall 2,y in R,
then there is at most one solution of (4) for each initial value.
Proof. Similarly to [1], define a sequence 1=a,>a,>- - by

'[ : o(@) de=n.
(an,an -1
Choose smooth even functions ¢,(x) on R' such that

[ su@ran=1,
$.(x)=0 for |z|<a, or [x|=a,_, and
1
(5) 0<g.M= ) for a,<|%|<a,_..
Set u(x)=|xz|*"' and u,=uxé,. Since ¢, tends to the s-function at the
origin, the function u,(x) tends to the function u(x) as n—oco. We
shall show that Lu,=cg, with a certain constant ¢ independent of n,
where L is the operator defined by (3). Let w(x)=|xz|*"'e " (¢>0)
and set u;=wu'x¢,. The function u; belongs to the space S(R') of
tempered functions. Let &F and &' denote the Fourier transform and
the inverse Fourier transform respectively. Then Lf=—c¢,J'[|¢|*F f]
for each tempered function f, where ¢,==(I"(e+1) sin (ex/2))~'. Since
Fu (&) =T"(a) {(e+18) "+ (e —i§) }Fp.(§) and [§|*{(c +26) "+ (e —1i§)"*}
tends to 2 cos (ar/2) as ¢ | 0 for £+0, we have
Lu,=1im Lu;, = —lifgl al'(@F ] Fun ()]

el0 s

= —l.igl al(@F [|g]" {(e+1i8) *+ (e —i8) )T, ()]

= —2xa"! cot (ar/2)¢,=cP,.
Let X! and X2 be any solutions of (4) with the same initial value. Then
we have
U (X — X)) —u,,(0)

= [1oGxd— oDl L, X2~ XD
+j j [, (X} — X2 4 (0(X2) — o(X2_))2) — uo (X} — X2 )]q(ds, dz).

Set T',=inf {t; | X}— X}/ >k}. Since
le@)—a@)|* Lu,(@x—y)=co(x—yYDd.(x—Y)<e/n
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by (5), it follows that
(AT
Elu,(X}pr,— mmgun@w” %ds].

0

Therefore we have

E[ X, r,— Xipar | 1=0,
because u,(x)—u(x)=|z|*"' as n—oo. Since P[T,<t]-0 as k—oo, we
conclude that X:=X? a.e.

Theorem 2. Let 0<a<l and p(x), a function as in Theorem 1.
Moreover we assume that p(x) is concave. If |o(x)—a(y)|Zp(x—1y|) is
satisfied for all x and y in R, then the solution of (4) is uniquely de-
termined for each initial value.

Proof. Let ,(x)=+n/2r exp (—na?/2) and set v(x)=|z| and v,
=vxy,. As in the proof of Theorem 1, it is proved that there is a
positive constant ¢ such that Lv,=c|x|'""*xy,. Let X; and X} be any
solutions of (4) with the same initial value. Set ¥V,=X'—X? and T,
=inf {t;|Y,|>k}. Similarly to the proof of Theorem 1, we have

tATk
B0, (¥ ire IS0 O+E| [ 0¥ DrLo, (¥ ds]-
Since v,(x)—|®| and Lv,—c|z|'"* as n— oo, it follows that
t ATk
BIY, < B[ 00X 7, ds).

Since p((yD* |y *<ap(y))+(1—a)|y| and p(x) is concave, the function
h(t)=EI[|Y,,r|] satisfies the integral inequality

ht)=e [ lap(h(e)+ 1 —a)h(s)lds.
This implies that
h(t) < ca j: €20=9 =0 5(J(3))ds.
Since
Lo p(x)"'dx= oo,

we have A(t)=0, and therefore Y,,,,=0a.e. Hence Y,=0 a.e. because
PIT,<t]l—>0 as k—oo.

3. Complementary results. Let 0<p<aAl. Then
(6) EU:|Z,|-ﬂds]<oo.
Set
T(t)=J: |Z,|-*ds and T-'(r)=inf {t; T(®)>1),
and define
e=[] \Z,]-# 2q(ds, d2)
0 12|51Zs|B1a

T—1(r)
+[7 1zl s, da)
0 121>1Zs|Bla
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The process £, (0<t<T (4 )) is well defined because of (6). It is
easy to show that the process {2, F, F,_..,, P; .} is an a-stable process
with the generator L, and the process X.=Z,_,,, is a solution of the
equation: dX,.=|X._|”*d{, X,=0. Namely the equation has a non-
trivial solution besides the trivial one. Hence we have proved the
following.

Proposition. Consider equation (4) for the coefficient o(x)=|z|
and the initial value 2,=0. Then the pathwise uniqueness holds or
not according as LNAa'<y or 0<y<1Aa™.

This result corresponds with the following one obtained by
Girzanov [3] that if 0<y<1/2, then the stochastic equation dX,
=|X,[' dB, with X;=0 has infinitely many solutions.

Nakao [2] proved that the pathwise uniqueness holds for (1) if the
function ¢(x) is uniformly positive on R' and if ¢(x) is of bounded
variation on any compact interval.

Theorem 3. Let 1<a<<2. The pathwise uniqueness holds for
(4) if there are positive constants A, A, ¢ and & such that 2,<a(®)< 2,
for all z in R* and that

lo(@)—a()|Zc|e—y| for all x, y in R

Remark. If a(@—1)<1, namely 1<a<(1+4+5)/2, this result
is not contained in Theorem 1.

Proof of Theorem 3. Define

() =I: o(y)'dy.

Let X! and X? be any solutions of (4) with the initial value x,. Then
V(XY —v(@)—Z,

=L I Uo {o(Xi )a(X: +o(X§_)0z)"1-—1}d0] 2p(ds, d2).

From the assumption the process V,=v(X}) —v(X? has the integrable
total variation on any compact time interval. The process M,=X;—X}
is a martingale of jump type satisfying

(7) AAM, <V,<i*M, aslongas M,=0.

Using a similar technique to [2], it is proved from property (7) that
the martingale M, is identically zero.

References

[1] T.Yamada and S. Watanabe: On the uniqueness of solutions of stochastic
differential equations. J. Math. Kyoto Univ., 11, 155-167 (1971).

[2] S. Nakao: On the pathwise uniqueness of solutions of one-dimensional
stochastic differential equations. Osaka J. Math., 9, 513-518 (1972).

[38] I. V. Girzanov: An example of non-uniqueness of the solution of the
stochastic equation of K. Ité. Theory Prob. Appl., 7, 325-331 (1962)
(English translation).



