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Hadamard’s Variational Formula for the
Bergman Kernel

By Gen KOMATSU
Department of Mathematics, Osaka University

(Communicated by KSsaku YOSIDA, M. J. A., Oct. 12, 1982)

1. Statement of the theorem. Our purpose is to justify the
Hadamard’s (first) variational formula or the Bergmn kernel asso-
ciated to strictly pseudo-convex domain in C with n>__2.

Let 90cC with n>=l be a bounded domain with smooth boundary
tg0, given by to={Z e C r(z)0}, where r e C(cn; R) with dr=/=O on
3/2o is a defining unction of 9o. Every domain close to tg0 is prame-
trized by a small real-valued function p on 3/20 in such a wy that the
boundary o.f that domain 9, is given by
( 1 ) [2. {z+p(z)(z) z e
where w(z)=dr(z)/[dr(z)] is identified with an element of Cn.

Let K.(z, w) for (z, w)e/2. /2. denote the Bergman kernel asso-
ciated to 9., which is the reproducing kernel associated to the space
LH(f2.) of L(tgp)-holomorphic unctions. With pe C(90; R)and
(z, w) e 2o 20 fixed arbitrarily, we set

( 2 ) K"(z, w)----d--Kp/e"(z,

which is the Hadamard’s first variation of K"(z, w) at p in the direction
p. In the case n--l, it has been observed by Schiffer [10] (see also
Bergman-Schiffer [2], [3]) that the vriation (2) at p=0 is given by the
following so-called Hadamard’s (first) variational formula"

( 3 ) -K(z, w)=[ K(z, 5)K(5, w)6p(5)dS(5),
J

where dS() stands or the standard surface element of 3/20 at . Our
purpose is to prove the following"

Theorem. If [20 is strictly pseudo-convex, then the variation (2)
at p=0 exists and is given by (3).

Notice that the right hand side of (3) makes sense, for if /20 is
strictly pseudo-convex then K( ) is smooth on (90 [-)0)\A, where A
denotes the diagonal of t90 tg0 (see Kerzman [9]).

2. Existence of the variation (2). We begin with constructing
a diffeomorphism e, "C--.C for p small, which satisfies
( 4 ) e(z)=z +p(z)(z) or z e t00 (c. (1)).
Given a small constant 0)0, we set N(o)={z e C; Ir(z)l0}. Then,
every point z e N(0) is uniquely expressed as z=z +r(z)(z), where
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z e 3/20 is the nearest point to z. Given a constant e with00/4,
we choose o e C(R; R) satisfying

)0(r)--1 or Irl=<_, and d ;0(r) < __3 or r e R.
0(r) 0 ior r[3e,, -d ]-- 4

Given p e V(el)= {p e C(3t20 R) [p(z)[ e or z e 3t20}, we define a map-
ping e’cn--C by setting

e,(z) z + Zo(r(z))p(z).(z) for z e N(e0),
e,(z)=z otherwise.

Then, e, is diffeomorphism satisfying (4) and e,(/20)=2,.
By means of e,, one cn pull back in general a function f" on

and linear operator L, acting on f" as follows"
f e.*f"=f" e, L.f (e*.L.e;*)f.=(L.(f e;1))o e..

Let P.’L(9,)-.LH(9.)L(.) denote the Bergman projection asso-
ciated to tf., which is the orthogonal projection to L"H(2.) and is
related to K.(z, w) by

P"f"(z)=[ K.(z, w)f"(w)dV(w) for f" e L(9.),
d

where dV(w) stands for the standard volume form of C at w
* satisfiesThen, P. e. P e-1*

P.f.(z)= K.(z, w)f.(w)dV(e.(w)) for f. e L(D0),
d2o

where we have set
( 5 ) K.(z, w)= K.(e.(z), e.(w)) for (z, w) e 90 Do.
Observe that if z, w e tg0\N(0) then e.(z)=z, e.(w)=w, so that K.(z, w)
=K.(z, w). Therefore, the variation (2) exists for z, w e[2o\N(o)
provided that K.(z, w) depends smoothly on p, as far as p is small with
respect to the C(3/20)-topology.

To see the smooth dependence of K.(z, w) on p small, we first recall
the ollowing ormula due to Kerzman [9] and Bell [1]"

K(z, w) P.(z) or z, w e/2., (z)=(z- w),
where e C:(C R) is a radially symmetric .function satisfying

1, 0 or [[ with 0 (dist (w, 3/2.).dV () 2 2
C

If e is chosen so smM1 that 0<e<e0/4, then
( 6 K.(z, w)=P.(z) or z, w e 90\N(e0).
We next recall the assumption that 90 is strictly pseudo-convex. Then,
if p e V(e) is small with respect to the C(t0)-topology, say

p V={p e V();Iplc(Oo)} with 0 smll,
then 2. is strictly pseudo-convex uniformly in p e V in the sense that

Or(z)>C I whenever Or(z) =0,

holds for each z e 2:, where r, =r e;’ is defining function of tf: nd
C0 is a constant independent of p e V.. In this case, the following
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formula due to Kerzman [9] holds"
( 7 ) P"- 1-9N,$, thus P,= 1-9,N,,,
where 9 denotes the formal djoint of , and N, stands for the -Neumann operator acting on (0, 1)-forms on t2,. The definition of
9,, N, and , will be clear. The smooth dependence of the pull back
Np of N" on p small in the C(3t20)-topology has been proved by
Hamilton [8] via the Nash-Moser process. Hence, by virtue of (5), (6)
and (7), the variation (2) mkes sense.

Remark 1. Another result on the stability of the Bergman kernel
has been obtained recently by Greene and Krantz [5], [6], [7].

Remark 2. In the case n= 1, the -Neumann operator reduces to
the Green operator for the zero Dirichlet problem (see, e.g., [4]), and
the formula (7) is still valid. Thus, the variation of the Bergman
kernel is expressed by using the Green function (see [10], [2], [3]).

3. Proof of the variational formula (3). Pick (z, w) e/20 /20
arbitrarily and choose 0)0 so small that z, w e t20\N(e0). Then K(z, w)
--K(z, w) .for p e V. By the reproducing property for the Bergman
kernel, we have

w)--K"(z, w)--f K(z, )K,(, w)J[e,]()dV(),K(z,
I2

where J[e](5) stands for the Jacobian determinant of the mapping e
at 5 e 20. Taking the variation at p= 0 in the direction/p e C(320 R),
we get

(8)

where

and

d K,,(z,K(z, w)=Ko(z, w)= de

{(11)+ (12) + (Is)}dV(),
9o

(I) Ko(z, )K(, w), (I0= K(z, )Ko(, w),
(IO= K(z, )K(, w)J[eo](),

d6J[e0]() div #X0(), aX0() de
Denoting by /: the unit exterior normal vector at e 90, we have
Xo()=p()/ at e a9o, and

Ko(z, )=K(z, )+Xo()K(z, ) for e 9o,
K0(, w)=K(, w)+Xo()K(, w) for e 0,

where 3Xo() is acting as a differential operator. Notice that K( .)
is sesqui-holomorphic as well as K(., .), and that K(., .) is hermitian
symmetric with the reproducing property. Hence,

(I)dV()=K(z, w)-[ 3Xo()g(z, ). K(, w)dV(),
dDo 2o

[ +[ K(z,
Do d9o
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while by integrating by parts,

;o (I)dV(:)= -o 3X(:){K(z’ :)K(G w)}dV(:)

+_.[Oo K(z’ )K(’ w)3P()dS()"
Therefore, by (8), we obtain the desired variational formula (3).
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