94. Generic Bifurcations of Varieties*)

By Shyūichi Izumiya
Department of Mathematics, Nara Women's University
(Communicated by Heisuke Hironaka, m. J. a., Oct. 12, 1982)

Let $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be a smooth map germ. For each $u \in\left(\boldsymbol{R}^{r}, 0\right)$, we have a germ of "varieties" $f_{u}^{-1}(0)$ defined by $f_{u}=f \mid \boldsymbol{R}^{r} \times u$. In this note, we shall announce some results about bifurcations of $f_{u}^{-1}(0)$ as u varies in $\left(\boldsymbol{R}^{r}, 0\right)$. Details will appear elsewhere.

1. Parametrised contact equivalence. The local ring $C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$ is the ring of smooth function germs $\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow \boldsymbol{R}$. This ring has a maximal ideal \mathfrak{M}_{n+r} consisting of all germs with $f(0)=0$. For a smooth map germ $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, we denote $I(f)=f^{*}\left(\mathfrak{M}_{p}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$, where $f^{*}: C_{0}^{\infty}\left(\boldsymbol{R}^{p}\right) \rightarrow C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$ is defined by $f^{*}(h)=h \circ f$.

Definition 1. Map germs $f, g:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ are P- Kequivalent (resp. S.P-K-equivalent) if there exists a diffeomorphism germ on ($\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0$) of the form $\Phi(x, u)=\left(\Phi_{1}(x, u), \phi(u)\right)$ (resp. $\Phi(x, u)$ $=\left(\Phi_{1}(x, u), u\right)$) such that $\Phi^{*}(I(f))=I(g)$. We denote $f \sim_{p-} \mathcal{K} g$ (resp. $\left.f \sim_{s . P-\mathcal{K}} g\right)$.

For each smooth map germ $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, the bifurcation map germ $\pi_{f}:\left(f^{-1}(0), 0\right) \rightarrow\left(\boldsymbol{R}^{r}, 0\right)$ is defined by $\pi_{f}(x, u)=u$.

Definition 2. For two map germs $f, g:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, bifurcation map germs π_{f}, π_{g} are A-equivalent if there are diffeomorphism germs Φ on $\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right)$ and ϕ on $\left(\boldsymbol{R}^{r}, 0\right)$ such that $\Phi\left(f^{-1}(0)\right)=g^{-1}(0)$ and $\phi \circ \pi_{f}=\pi_{g} \circ \Phi$.

Remarks. i) If f, g are P - \mathcal{K}-equivalent, then π_{f}, π_{g} are \mathcal{A} equivalent.
ii) For each $f:\left(\boldsymbol{R}^{n}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, we define $D_{f}:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{p}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ by $D_{f}(x, y)=f(x)-y$. We can see that P - \mathcal{K}-equivalence theory is one of the generalization of Mather's \mathcal{A}-equivalence theory (cf. [3], [4]).
iii) The case when $r=1$, this equivalence relation has been studied by M. Golubitsky and D. Schaeffer ([1]). But the situation is quite different in the case of $r \geq 2$ (see the next section).
2. Finite determinacy. Definition 3. Let $f, g:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right)$ $\rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be smooth map germs. i) f, g are k-jet equivalent if (f^{*} $\left.-g^{*}\right)\left(\mathfrak{M}_{p}\right) \subset \mathfrak{M}_{n+r}^{k+1} . \quad$ ii) f, g are $\left(k_{1}, k_{2}\right)$-jet equivalent if $\left(f^{*}-g^{*}\right)\left(\mathfrak{M}_{p}\right)$ $\subset\left(\mathfrak{M}_{n}^{k_{1}+1}+\mathfrak{M}_{r}^{k_{2}+1}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$.

These are clearly equivalence relations; we respectively denote $j_{0}^{k} f$ and $j_{0}^{\left(k_{1}, k_{2}\right)} f$ of equivalence classes represented by f.
*) Partially supported by the Sakkokai Foundation.

Definition 4. i) Map germ $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ is k-determined (resp. (k_{1}, k_{2})-determined) relative to \mathcal{S} if every map germ $g:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right)$ $\rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ such that $j_{0}^{k} f=j_{0}^{k} g$ (resp. $j_{0}^{\left(k_{1}, k_{2}\right)} f=j_{0}^{\left(k_{1}, k_{2}\right)} g$) is \mathcal{S}-equivalent to f. ii) Map germ $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ is finitely determined (resp. separated finitely determined) relative to \mathcal{S} if there exists $k \in N$ (resp. $\left(k_{1}, k_{2}\right) \in N \times N$) such that f is k-determined (resp. (k_{1}, k_{2})-determined) relative to \mathcal{S}. Where \mathcal{S} is $P-\mathcal{K}$ or $S . P-\mathcal{K}$.

Let $C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right)$ be the $C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$-module of smooth map germs $\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow \boldsymbol{R}^{p}$. For each germ $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, we denote

$$
\begin{aligned}
T_{e}(P-\mathcal{K})(f)= & \left\langle\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right\rangle C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)+\left\langle\frac{\partial f}{\partial u_{1}}, \cdots, \frac{\partial f}{\partial u_{r}}\right\rangle C_{0}^{\infty}\left(\boldsymbol{R}^{r}\right) \\
& +f^{*}\left(\mathfrak{M}_{p}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right), \\
T_{e}(\text { S.P-K })(f) & =\left\langle\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right\rangle C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)+f^{*}\left(\mathfrak{M}_{p}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
T(S . P-\mathcal{K})(f)= & \mathfrak{M}_{n+r}\left\langle\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right\rangle C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{p}\right) \\
& +f^{*}\left(\mathfrak{M}_{p}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right) .
\end{aligned}
$$

Then we have the following theorems.
Theorem A (Characterization theorem). The following are equivalent.

1) f is finitely determined relative to $P-\mathcal{K}$ (resp. S.P-K).
2) f is separated finitely determined relative to $P-\mathcal{K}$ (resp. S.P-K).
3) For some integer $k, \mathfrak{M}_{n+r}^{k} C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right) \subset T_{e}(P-\mathcal{K})(f)$ (resp. $\left.T_{e}(S . P-K)(f)\right)$.
4) $\operatorname{dim}_{R} C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right) / T_{e}(\boldsymbol{P}-\mathcal{K})(f)<+\infty$ (resp. $\operatorname{dim}_{\boldsymbol{R}} C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right) / T_{e}($ S.P- $\left.\mathcal{K})(f)<+\infty\right)$.
Theorem B. Let $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be a smooth map germ.
i) Let D be a $C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}\right)$-submodule of $C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right)$.

If $D \subset T_{e}(P-\mathcal{K})(f)+\left(\mathfrak{M}_{n}^{s_{1}}+\mathfrak{M}_{r}^{s_{2}}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right)$ and
$\left(\mathfrak{M}_{n}^{s_{1}}+\mathfrak{M}_{r}^{s_{2}}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right) \subset T(S . P-\mathcal{K})(f)+\mathfrak{M}_{r} D$

$$
+\mathfrak{M}_{n+r}\left(\mathfrak{M}_{n}^{s_{1}}+\mathfrak{M}_{r}^{s_{2}^{2}}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right)
$$

then f is $\left(s_{1}, s_{2}\right)$-determined relative to $P-\mathcal{K}$.
ii) If $r=1$ and $\left(\mathfrak{M}_{n}^{s_{1}}+\mathfrak{M}_{1}^{s_{2}}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}, \boldsymbol{R}^{p}\right) \subset T(S . P-\mathcal{K})(f)+\mathfrak{M}_{n+1}\left(\mathfrak{M}_{n}^{s_{1}}\right.$ $\left.+\mathfrak{M}_{1}^{s_{2}}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}, \boldsymbol{R}^{p}\right)$ then f is $\left(s_{1}, s_{2}\right)$-determined relative to $S . P-\mathcal{K}$.

Remarks. 1) In [1], there is the following estimate: If $\mathfrak{M}_{n+1}^{k} C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}, \boldsymbol{R}^{p}\right) \subset T(S . P-\mathcal{K})(f)$, then f is k-determined relative to $P-\mathcal{K}$. The statement of ii) is better than their estimate.
2) We have many other estimates as corollaries of the above theorem. For example, if $C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right)=T_{e}(P-\mathcal{K})(f)$, then f is $(r+1,1)$-determined relative to $P-\mathcal{K}$. This is a generalization of

Mather's theorem (cf. [4], Proposition 3.5).
In the case where $r \geqq 2$, situations are more complicated as follows.
Proposition C. Let $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be a smooth map germ with $r \geqq 2$. The following are equivalent.

1) f is finitely determined relative to S.P-K.
2) f is S.P- \mathcal{K}-equivalent to the following germ;

$$
\left(x_{1}, \cdots, x_{n}, u_{1}, \cdots, u_{r}\right) \longmapsto\left(x_{1}, \cdots, x_{p}\right) .
$$

3. Versal deformations. Definitions of the deformation of a smooth map germ and its versality with respect to P - \mathcal{K}-equivalence is analogous to those of smooth section germs in [2]. Then we have the versality theorem for P - \mathcal{K}-equivalence.

Theorem D. Let $\boldsymbol{F}:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r} \times \boldsymbol{R}^{s}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be a s-parameter deformation of $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$. If $C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right)=T_{e}(P-\mathcal{K})(f)$ $+\left\langle\partial F / \partial x_{1}\right| R^{n} \times 0, \cdots, \partial F / \partial x_{n}\left|\boldsymbol{R}^{n} \times 0, e_{1}, \cdots, e_{p}\right\rangle_{R}$, then F is a $P-\mathcal{K}$-versal deformation of f. Here, $e_{i}=(0, \cdots, 0,1,0, \cdots, 0)$.

Remark. The above theorem is not a corollary of Theorem B in [2]. For the proof, we must use a generalization of the preparation theorem in ([5], Corollary 1.7).
4. Classifications. For each $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$, we define $d f_{x}: T_{0} \boldsymbol{R}^{n} \times \boldsymbol{R}^{r} \rightarrow T_{0} \boldsymbol{R}^{p}$ by $d f_{x}\left(v_{i}, w_{j}\right)=\left(\sum_{i=1}^{n} v_{i}\left(\partial f_{l} / \partial x_{i}\right)\right), d f_{u}: T_{0} \boldsymbol{R}^{n} \times \boldsymbol{R}^{r}$ $\rightarrow T_{0} \boldsymbol{R}^{p}$ by $d f_{u}\left(v_{i}, w_{j}\right)=\left(\sum_{j=1}^{r} w_{j}\left(\partial f_{l} / \partial u_{j}\right)\right)$, and $d f_{u}^{K}=\pi \circ d f_{u} \mid \operatorname{Ker} d f_{x}$: Ker $d f_{x} \rightarrow$ Coker $d f_{x}$, where $\pi: T_{0} \boldsymbol{R}^{p} \rightarrow$ Coker $d f_{x}$ is the canonical projection.

Definition 4. i) We say that f has the \sum_{s}^{k}-type at 0 if rank $d f_{x}$ $=\min (n, p)-k$ and $\operatorname{rank} d f_{u}^{K}=\min \left(r, p-\operatorname{rank} d f_{x}\right)-s$.
ii) We say that f is non-singular at 0 if f has the \sum_{0}^{0}-type at 0 .

The following is the implicit function theorem relative to $P-\mathcal{K}$.
Theorem E. Let $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be a non-singular germ.

1) If $n \geqq p$, then f is S.P- \mathcal{K}-equivalent to the following germ; $\left(x_{1}, \cdots, x_{n}, u_{1}, \cdots, u_{r}\right) \longmapsto\left(x_{1}, \cdots, x_{p}\right)$.
2) If $n<p$ and $r \leqq p-n$, then f is P - K-equivalent to the following germ; $\left(x_{1}, \cdots, x_{n}, u_{1}, \cdots, u_{r}\right) \longmapsto\left(x_{1}, \cdots, x_{n}, u_{1}, \cdots, u_{r}, 0, \cdots, 0\right)$.
3) If $n<p$ and $r>p-n$, then f is $P-\mathcal{K}$-equivalent to the following germ ; $\left(x_{1}, \cdots, x_{n}, u_{1}, \cdots, u_{r}\right) \longmapsto\left(x_{1}, \cdots, x_{n}, u_{1}, \cdots, u_{p-n}\right)$.

We now set P - \mathcal{K}-codim $(f)=\operatorname{dim}_{R} C_{0}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, \boldsymbol{R}^{p}\right) / T_{e}(P-\mathcal{K})(f)$.
Theorem F (Classification theorem in the case of P - \mathcal{K}-codimension $=0)$. Let $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{r}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be a smooth map germ with P-K-codim $(f)=0$. If f has the $\sum_{\min (r, p-s)-q}^{\min (n, p)-t y p e ~ a t ~} 0$, then $p=s+q$ and there exist smooth map germs $g, \xi_{1}, \cdots, \xi_{r-q}:\left(\boldsymbol{R}^{n-s}, 0\right) \rightarrow\left(\boldsymbol{R}^{q}, 0\right)$ with rank $d g=0$ and

$$
\begin{aligned}
& C_{0}^{\infty}\left(\boldsymbol{R}^{n-s}, \boldsymbol{R}^{q}\right) /\left\langle\frac{\partial g}{\partial x_{s+1}}, \cdots, \frac{\partial g}{\partial x_{n}}\right\rangle C_{0}^{\infty}\left(\boldsymbol{R}^{n-s}\right)+g^{*}\left(\mathfrak{M}_{q}\right) C_{0}^{\infty}\left(\boldsymbol{R}^{n-s}, \boldsymbol{R}^{q}\right) \\
& \quad=\left\langle\xi_{1}, \cdots, \xi_{r-q}, e_{1}, \cdots, e_{q}\right\rangle_{\boldsymbol{R}}
\end{aligned}
$$

such that f is P - \mathcal{K}-equivalent to the following germ ;

$$
\begin{aligned}
&\left(x_{1}, \cdots, x_{n}, u_{1}, \cdots, u_{r}\right) \longmapsto\left(x_{1}, \cdots, x_{s}, u_{1}+g_{1}\left(x_{s+1}, \cdots, x_{n}\right)\right. \\
&+u_{q+1} \xi_{1}^{1}\left(x_{s+1}, \cdots, x_{n}\right)+\cdots+u_{1} \xi_{r-q}^{1}\left(x_{s+1}, \cdots, x_{n}\right), \cdots, u_{q} \\
&\left.+g_{q}\left(x_{s+1}, \cdots, x_{n}\right)+u_{q+1} \xi_{1}^{q}\left(x_{s+1}, \cdots, x_{n}\right)+\cdots+u_{r} \xi_{r-q}^{q}\left(x_{s+1}, \cdots, x_{n}\right)\right) .
\end{aligned}
$$

Here, $g=\left(g_{1}, \cdots, g_{q}\right)$ and $\xi_{j}=\left(\xi_{j}^{1}, \cdots, \xi_{j}^{q}\right)$ for any $j=1, \cdots, r-q$.
Remark. In the above theorem, g is the \mathcal{K}-finite map in the sense of Mather.

In the case of positive codimensions, we have the following
Theorem G. Let $f:\left(\boldsymbol{R}^{n} \times \boldsymbol{R}, 0\right) \rightarrow\left(\boldsymbol{R}^{p}, 0\right)$ be a smooth map germ with $n \geqq p$ and P - \mathcal{K}-codim $(f) \leqq 4$.

1) If f has the \sum_{0}^{1}-type at 0 , it is P - \mathcal{K}-equivalent to one of the following germs:

P - K-codim (f)	Normal forms
0	$\left(x_{1}, \cdots, x_{p-1}, u+Q\left(x_{p}, \cdots, x_{n}\right)\right)$
1	$\left(x_{1}, \cdots, x_{p-1}, u+x_{p}^{3}+Q\left(x_{p+1}, \cdots, x_{n}\right)\right)$
2	$\left(x_{1}, \cdots, x_{p-1}, u \pm x_{p}^{4}+Q\left(x_{p+1}, \cdots, x_{n}\right)\right)$
3	$\left(x_{1}, \cdots, x_{p-1}, u+x_{p}^{5}+Q\left(x_{p+1}, \cdots, x_{n}\right)\right)$
	$\left(x_{1}, \cdots, x_{p-1}, u+x_{p}^{3}+x_{p+1}^{3}+Q\left(x_{p+2}, \cdots, x_{n}\right)\right)$
4	$\left(x_{1}, \cdots, x_{p-1}, u+x_{p}^{3}-x_{p} x_{p+1}^{2}+Q\left(x_{p+2}, \cdots, x_{n}\right)\right)$
4	$\left(x_{1}, \cdots, x_{p-1}, u \pm x_{p}^{6}+Q\left(x_{p+1}, \cdots, x_{n}\right)\right)$
	$\left(x_{1}, \cdots, x_{p-1}, u \pm\left(x_{p}^{2} x_{p+1}+x_{p+1}^{4}\right)+Q\left(x_{p+2}, \cdots, x_{n}\right)\right)$

2) If f has the \sum_{1}^{1}-type at 0 , then it is P - \mathcal{K}-equivalent to one of the following germs:

P - \mathcal{K}-codim (f)	Normal forms
1	$\left(x_{1}, \cdots, x_{p-1}, \pm u^{2}+Q\left(x_{p}, \cdots, x_{n}\right)\right)$
2	$\left(x_{1}, \cdots, x_{p-1}, u^{3}+Q\left(x_{p}, \cdots, x_{n}\right)\right)$
	$\left(x_{1}, \cdots, x_{p-1}, \pm u^{2}+x_{p}^{3}+Q\left(x_{p+1}, \cdots, x_{n}\right)\right)$
3	$\left(x_{1}, \cdots, x_{p-1}, x_{p}^{3} \pm u x_{p}+Q\left(x_{p+1}, \cdots, x_{n}\right)\right)$
	$\left(x_{1}, \cdots, x_{p-1}, \pm u^{4}+Q\left(x_{p}, \cdots, x_{n}\right)\right)$
4	$\left(x_{1}, \cdots, x_{p-1}, x_{p}^{4} \pm u x_{p}+Q\left(x_{p+1}, \cdots, x_{n}\right)\right)$
	$\left(x_{1}, \cdots, x_{p-1}, u^{5}+Q\left(x_{p}, \cdots, x_{n}\right)\right)$
	$\left(x_{1}, \cdots, x_{p-1}, x_{p}^{5} \pm u x_{p}+Q\left(x_{p+1}, \cdots, x_{n}\right)\right)$

Here, $Q\left(x_{i}, \cdots, x_{n}\right)= \pm x_{i}^{2} \pm \cdots \pm x_{n}^{2}$.

References

[1] M. Golubitsky and D. Schaeffer: Comm. Pure Appl. Math., 32, 21-98 (1979).
[2] S. Izumiya: Publ. R.I.M.S. Kyoto Univ., 18, 135-157 (1982).
[3] J. Mather: Publ. Math. I.H.E.S., 35, 127-156 (1968).
[4] ——: ibid., 37, 223-248 (1970).
[5] G. Wasserman: Acta Math., 135, 58-128 (1975).

