94. Generic Bifurcations of Varieties^{*}

By Shyūichi Izumiya

Department of Mathematics, Nara Women's University

(Communicated by Heisuke HIRONAKA, M. J. A., Oct. 12, 1982)

Let $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \to (\mathbf{R}^p, 0)$ be a smooth map germ. For each $u \in (\mathbf{R}^r, 0)$, we have a germ of "varieties" $f_u^{-1}(0)$ defined by $f_u = f | \mathbf{R}^r \times u$. In this note, we shall announce some results about bifurcations of $f_u^{-1}(0)$ as u varies in $(\mathbf{R}^r, 0)$. Details will appear elsewhere.

1. Parametrised contact equivalence. The local ring $C_0^{\circ}(\mathbb{R}^n \times \mathbb{R}^r)$ is the ring of smooth function germs $(\mathbb{R}^n \times \mathbb{R}^r, 0) \to \mathbb{R}$. This ring has a maximal ideal \mathfrak{M}_{n+r} consisting of all germs with f(0)=0. For a smooth map germ $f: (\mathbb{R}^n \times \mathbb{R}^r, 0) \to (\mathbb{R}^p, 0)$, we denote $I(f) = f^*(\mathfrak{M}_p)C_0^{\circ}(\mathbb{R}^n \times \mathbb{R}^r)$, where $f^*: C_0^{\circ}(\mathbb{R}^p) \to C_0^{\circ}(\mathbb{R}^n \times \mathbb{R}^r)$ is defined by $f^*(h) = h \circ f$.

Definition 1. Map germs $f, g: (\mathbb{R}^n \times \mathbb{R}^r, 0) \to (\mathbb{R}^p, 0)$ are $P-\mathcal{K}$ -equivalent (resp. S.P- \mathcal{K} -equivalent) if there exists a diffeomorphism germ on $(\mathbb{R}^n \times \mathbb{R}^r, 0)$ of the form $\Phi(x, u) = (\Phi_1(x, u), \phi(u))$ (resp. $\Phi(x, u) = (\Phi_1(x, u), u)$) such that $\Phi^*(I(f)) = I(g)$. We denote $f \sim_{P-\mathcal{K}} g$ (resp. $f \sim_{S,P-\mathcal{K}} g$).

For each smooth map germ $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \rightarrow (\mathbf{R}^p, 0)$, the bifurcation map germ $\pi_f: (f^{-1}(0), 0) \rightarrow (\mathbf{R}^r, 0)$ is defined by $\pi_f(x, u) = u$.

Definition 2. For two map germs $f, g: (\mathbf{R}^n \times \mathbf{R}^r, 0) \to (\mathbf{R}^p, 0)$, bifurcation map germs π_j, π_g are *A*-equivalent if there are diffeomorphism germs Φ on $(\mathbf{R}^n \times \mathbf{R}^r, 0)$ and ϕ on $(\mathbf{R}^r, 0)$ such that $\Phi(f^{-1}(0)) = g^{-1}(0)$ and $\phi \circ \pi_f = \pi_g \circ \Phi$.

Remarks. i) If f, g are P- \mathcal{K} -equivalent, then π_f, π_g are \mathcal{A} -equivalent.

ii) For each $f: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$, we define $D_f: (\mathbb{R}^n \times \mathbb{R}^p, 0) \to (\mathbb{R}^p, 0)$ by $D_f(x, y) = f(x) - y$. We can see that P- \mathcal{K} -equivalence theory is one of the generalization of Mather's \mathcal{A} -equivalence theory (cf. [3], [4]).

iii) The case when r=1, this equivalence relation has been studied by M. Golubitsky and D. Schaeffer ([1]). But the situation is quite different in the case of $r\geq 2$ (see the next section).

2. Finite determinacy. Definition 3. Let $f, g: (\mathbb{R}^n \times \mathbb{R}^r, 0) \to (\mathbb{R}^p, 0)$ be smooth map germs. i) f, g are k-jet equivalent if $(f^* - g^*)(\mathfrak{M}_p) \subset \mathfrak{M}_{n+r}^{k+1}$. ii) f, g are (k_1, k_2) -jet equivalent if $(f^* - g^*)(\mathfrak{M}_p) \subset (\mathfrak{M}_n^{k+1} + \mathfrak{M}_r^{k+1})C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^r)$.

These are clearly equivalence relations; we respectively denote $j_0^k f$ and $j_0^{(k_1,k_2)} f$ of equivalence classes represented by f.

^{*&#}x27; Partially supported by the Sakkokai Foundation.

S. IZUMIYA

Definition 4. i) Map germ $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \to (\mathbf{R}^p, 0)$ is k-determined (resp. (k_1, k_2) -determined) relative to S if every map germ $g: (\mathbf{R}^n \times \mathbf{R}^r, 0) \to (\mathbf{R}^p, 0)$ such that $j_0^k f = j_0^k g$ (resp. $j_0^{(k_1, k_2)} f = j_0^{(k_1, k_2)} g$) is S-equivalent to f. ii) Map germ $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \to (\mathbf{R}^p, 0)$ is finitely determined (resp. separated finitely determined) relative to S if there exists $k \in N$ (resp. $(k_1, k_2) \in N \times N)$ such that f is k-determined (resp. (k_1, k_2) -determined) relative to S. Where S is P-K or S.P-K.

Let $C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^r, \mathbb{R}^p)$ be the $C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^r)$ -module of smooth map germs $(\mathbb{R}^n \times \mathbb{R}^r, 0) \rightarrow \mathbb{R}^p$. For each germ $f: (\mathbb{R}^n \times \mathbb{R}^r, 0) \rightarrow (\mathbb{R}^p, 0)$, we denote

$$T_{e}(P-\mathcal{K})(f) = \left\langle \frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}} \right\rangle C_{0}^{\infty}(\mathbf{R}^{n} \times \mathbf{R}^{r}) + \left\langle \frac{\partial f}{\partial u_{1}}, \cdots, \frac{\partial f}{\partial u_{r}} \right\rangle C_{0}^{\infty}(\mathbf{R}^{r}) + f^{*}(\mathfrak{M}_{p})C_{0}^{\infty}(\mathbf{R}^{n} \times \mathbf{R}^{r}, \mathbf{R}^{p}),$$
$$T_{e}(S.P-\mathcal{K})(f) = \left\langle \frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}} \right\rangle C_{0}^{\infty}(\mathbf{R}^{n} \times \mathbf{R}^{r}) + f^{*}(\mathfrak{M}_{p})C_{0}^{\infty}(\mathbf{R}^{n} \times \mathbf{R}^{r}, \mathbf{R}^{p})$$

and

$$T(S.P-\mathcal{K})(f) = \mathfrak{M}_{n+r} \left\langle \frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n} \right\rangle C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^p) \\ + f^*(\mathfrak{M}_p) C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r, \mathbf{R}^p).$$

Then we have the following theorems.

Theorem A (Characterization theorem). The following are equivalent.

- 1) f is finitely determined relative to $P-\mathcal{K}$ (resp. S.P- \mathcal{K}).
- 2) f is separated finitely determined relative to $P-\mathcal{K}$ (resp. S.P- \mathcal{K}).
- 3) For some integer k, $\mathfrak{M}_{n+r}^k C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^r, \mathbb{R}^p) \subset T_e(P-\mathcal{K})(f)$ (resp. $T_e(S.P-\mathcal{K})(f)$).
- 4) $\dim_{\mathbf{R}} C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r, \mathbf{R}^p) / T_e(\mathbf{P} \mathcal{K})(f) < +\infty$ (resp. $\dim_{\mathbf{R}} C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r, \mathbf{R}^p) / T_e(S.\mathbf{P} - \mathcal{K})(f) < +\infty).$

Theorem B. Let $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \rightarrow (\mathbf{R}^p, 0)$ be a smooth map germ.

i) Let D be a $C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^r)$ -submodule of $C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^r, \mathbb{R}^p)$.

If $D \subset T_e(P-\mathcal{K})(f) + (\mathfrak{M}_n^{s_1} + \mathfrak{M}_r^{s_2})C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r, \mathbf{R}^p)$ and

$$(\mathfrak{M}_n^{s_1} + \mathfrak{M}_r^{s_2})C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r, \mathbf{R}^p) \subset T(S.P-\mathcal{K})(f) + \mathfrak{M}_r D$$

$$+\mathfrak{M}_{n+r}(\mathfrak{M}_{n}^{s_{1}}+\mathfrak{M}_{r}^{s_{2}})C_{0}^{\infty}(\boldsymbol{R}^{n}\times\boldsymbol{R}^{r},\boldsymbol{R}^{p})$$

then f is (s_1, s_2) -determined relative to P-K.

ii) If r=1 and $(\mathfrak{M}_n^{s_1}+\mathfrak{M}_1^{s_2})C_0^{\circ}(\mathbf{R}^n\times\mathbf{R},\mathbf{R}^p)\subset T(S.P-\mathcal{K})(f)+\mathfrak{M}_{n+1}(\mathfrak{M}_n^{s_1}+\mathfrak{M}_1^{s_2})C_0^{\circ}(\mathbf{R}^n\times\mathbf{R},\mathbf{R}^p)$ then f is (s_1,s_2) -determined relative to $S.P-\mathcal{K}$.

Remarks. 1) In [1], there is the following estimate: If $\mathfrak{M}_{n+1}^{k}C_{0}^{\infty}(\mathbb{R}^{n}\times\mathbb{R},\mathbb{R}^{p})\subset T(S.P-\mathcal{K})(f)$, then f is k-determined relative to $P-\mathcal{K}$. The statement of ii) is better than their estimate.

2) We have many other estimates as corollaries of the above theorem. For example, if $C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r, \mathbf{R}^p) = T_e(\mathbf{P}-\mathcal{K})(f)$, then f is (r+1, 1)-determined relative to $\mathbf{P}-\mathcal{K}$. This is a generalization of

No. 8]

Mather's theorem (cf. [4], Proposition 3.5).

In the case where $r \geq 2$, situations are more complicated as follows.

Proposition C. Let $f: (\mathbb{R}^n \times \mathbb{R}^r, 0) \to (\mathbb{R}^p, 0)$ be a smooth map germ with $r \geq 2$. The following are equivalent.

- 1) f is finitely determined relative to S.P- \mathcal{K} .
- 2) f is S.P- \mathcal{K} -equivalent to the following germ;

 $(x_1, \cdots, x_n, u_1, \cdots, u_r) \longmapsto (x_1, \cdots, x_p).$

3. Versal deformations. Definitions of the deformation of a smooth map germ and its versality with respect to P- \mathcal{K} -equivalence is analogous to those of smooth section germs in [2]. Then we have the versality theorem for P- \mathcal{K} -equivalence.

Theorem D. Let $F: (\mathbf{R}^n \times \mathbf{R}^r \times \mathbf{R}^s, 0) \rightarrow (\mathbf{R}^p, 0)$ be a s-parameter deformation of $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \rightarrow (\mathbf{R}^p, 0)$. If $C_0^{\infty}(\mathbf{R}^n \times \mathbf{R}^r, \mathbf{R}^p) = T_e(P-\mathcal{K})(f)$ $+ \langle \partial F / \partial x_1 | \mathbf{R}^n \times 0, \dots, \partial F / \partial x_n | \mathbf{R}^n \times 0, e_1, \dots, e_p \rangle_{\mathbf{R}}$, then F is a P- \mathcal{K} -versal deformation of f. Here, $e_i = (0, \dots, 0, 1, 0, \dots, 0)$.

Remark. The above theorem is not a corollary of Theorem B in [2]. For the proof, we must use a generalization of the preparation theorem in ([5], Corollary 1.7).

4. Classifications. For each $f: (\mathbb{R}^n \times \mathbb{R}^r, 0) \to (\mathbb{R}^p, 0)$, we define $df_x: T_0\mathbb{R}^n \times \mathbb{R}^r \to T_0\mathbb{R}^p$ by $df_x(v_i, w_j) = (\sum_{i=1}^n v_i(\partial f_i/\partial x_i)), df_u: T_0\mathbb{R}^n \times \mathbb{R}^r \to T_0\mathbb{R}^p$ by $df_u(v_i, w_j) = (\sum_{j=1}^r w_j(\partial f_i/\partial u_j)),$ and $df_u^K = \pi \circ df_u$ |Ker df_x : Ker $df_x \to$ Coker df_x , where $\pi: T_0\mathbb{R}^p \to$ Coker df_x is the canonical projection.

Definition 4. i) We say that f has the $\sum_{s}^{k} -type \ at \ 0$ if rank df_{x} =min (n, p)-k and rank df_{u}^{K} =min (r, p-rank $df_{x})-s$.

ii) We say that f is non-singular at 0 if f has the \sum_{0}^{0} -type at 0. The following is the implicit function theorem relative to P- \mathcal{K} . Theorem E. Let $f: (\mathbb{R}^{n} \times \mathbb{R}^{r}, 0) \to (\mathbb{R}^{p}, 0)$ be a non-singular germ. 1) If $n \ge p$, then f is S.P- \mathcal{K} -equivalent to the following germ;

 $(x_1, \cdots, x_n, u_1, \cdots, u_r) \longmapsto (x_1, \cdots, x_p).$

2) If n < p and $r \leq p-n$, then f is $P-\mathcal{K}$ -equivalent to the following germ; $(x_1, \dots, x_n, u_1, \dots, u_r) \mapsto (x_1, \dots, x_n, u_1, \dots, u_r, 0, \dots, 0)$.

3) If n < p and r > p - n, then f is P- \mathcal{K} -equivalent to the following germ; $(x_1, \dots, x_n, u_1, \dots, u_r) \mapsto (x_1, \dots, x_n, u_1, \dots, u_{p-n})$.

We now set P- \mathcal{K} -codim $(f) = \dim_{\mathbb{R}} C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^r, \mathbb{R}^p) / T_e(P - \mathcal{K})(f)$.

Theorem F (Classification theorem in the case of P- \mathcal{K} -codimension =0). Let $f: (\mathbf{R}^n \times \mathbf{R}^r, 0) \to (\mathbf{R}^p, 0)$ be a smooth map germ with P- \mathcal{K} -codim (f)=0. If f has the $\sum_{\min(r,p-s)-q}^{\min(r,p-s)-q}$ -type at 0, then p=s+q and there exist smooth map germs $g, \xi_1, \dots, \xi_{r-q}: (\mathbf{R}^{n-s}, 0) \to (\mathbf{R}^q, 0)$ with rank dg=0 and

$$C_0^{\infty}(\boldsymbol{R}^{n-s}, \boldsymbol{R}^q) \Big/ \Big\langle \frac{\partial g}{\partial x_{s+1}}, \cdots, \frac{\partial g}{\partial x_n} \Big\rangle C_0^{\infty}(\boldsymbol{R}^{n-s}) + g^*(\mathfrak{M}_q) C_0^{\infty}(\boldsymbol{R}^{n-s}, \boldsymbol{R}^q) = \langle \xi_1, \cdots, \xi_{r-q}, e_1, \cdots, e_q \rangle_{\boldsymbol{R}}$$

such that f is P- \mathcal{K} -equivalent to the following germ;

 $\begin{array}{l} (x_{1}, \dots, x_{n}, u_{1}, \dots, u_{r}) \longmapsto (x_{1}, \dots, x_{s}, u_{1} + g_{1}(x_{s+1}, \dots, x_{n}) \\ + u_{q+1}\xi_{1}^{1}(x_{s+1}, \dots, x_{n}) + \dots + u_{r}\xi_{r-q}^{1}(x_{s+1}, \dots, x_{n}), \dots, u_{q} \\ + g_{q}(x_{s+1}, \dots, x_{n}) + u_{q+1}\xi_{1}^{q}(x_{s+1}, \dots, x_{n}) + \dots + u_{r}\xi_{r-q}^{q}(x_{s+1}, \dots, x_{n})). \\ Here, \ g = (g_{1}, \dots, g_{q}) \ and \ \xi_{j} = (\xi_{j}^{1}, \dots, \xi_{j}^{q}) \ for \ any \ j = 1, \dots, r-q. \end{array}$

Remark. In the above theorem, g is the \mathcal{K} -finite map in the sense of Mather.

In the case of positive codimensions, we have the following

Theorem G. Let $f: (\mathbb{R}^n \times \mathbb{R}, 0) \rightarrow (\mathbb{R}^p, 0)$ be a smooth map germ with $n \ge p$ and P- \mathcal{K} -codim $(f) \le 4$.

1) If f has the \sum_{0}^{1} -type at 0, it is P-K-equivalent to one of the following germs:

P - \mathcal{K} -codim (f)	Normal forms
0	$(x_1, \ldots, x_{p-1}, u+Q(x_p, \ldots, x_n))$
1	$(x_1, \dots, x_{p-1}, u+x_p^3+Q(x_{p+1}, \dots, x_n))$
2	$(x_1, \dots, x_{p-1}, u \pm x_p^4 + Q(x_{p+1}, \dots, x_n))$
3	$(x_1, \dots, x_{p-1}, u+x_p^5+Q(x_{p+1}, \dots, x_n))$
	$(x_1, \cdots, x_{p-1}, u+x_p^3+x_{p+1}^3+Q(x_{p+2}, \cdots, x_n))$
	$(x_1, \cdots, x_{p-1}, u+x_p^3-x_px_{p+1}^2+Q(x_{p+2}, \cdots, x_n))$
4	$(x_1, \dots, x_{p-1}, u \pm x_p^{\mathfrak{s}} + Q(x_{p+1}, \dots, x_n))$
	$(x_1, \dots, x_{p-1}, u \pm (x_p^2 x_{p+1} + x_{p+1}^4) + Q(x_{p+2}, \dots, x_n))$

2) If f has the $\sum_{i=1}^{1}$ -type at 0, then it is P-K-equivalent to one of the following germs:

P - \mathcal{K} -codim (f)	Normal forms
1	$(x_1, \cdots, x_{p-1}, \pm u^2 + Q(x_p, \cdots, x_n))$
2	$(x_1, \cdots, x_{p-1}, u^3 + Q(x_p, \cdots, x_n))$
	$(x_1, \cdots, x_{p-1}, \pm u^2 + x_p^3 + Q(x_{p+1}, \cdots, x_n))$
	$(x_1, \dots, x_{p-1}, x_p^3 \pm ux_p + Q(x_{p+1}, \dots, x_n))$
3	$(x_1, \cdots, x_{p-1}, \pm u^4 + Q(x_p, \cdots, x_n))$
	$(x_1, \dots, x_{p-1}, x_p^4 \pm ux_p + Q(x_{p+1}, \dots, x_n))$
4	$(x_1, \cdots, x_{p-1}, u^5 + Q(x_p, \cdots, x_n))$
	$(x_1, \dots, x_{p-1}, x_p^5 \pm ux_p + Q(x_{p+1}, \dots, x_n))$
Here, $Q(x_i, \cdots)$, x_n) = $\pm x_i^2 \pm \cdots \pm x_n^2$.

References

- [1] M. Golubitsky and D. Schaeffer: Comm. Pure Appl. Math., 32, 21-98 (1979).
- [2] S. Izumiya: Publ. R.I.M.S. Kyoto Univ., 18, 135-157 (1982).
- [3] J. Mather: Publ. Math. I.H.E.S., 35, 127-156 (1968).
- [4] ——: ibid., **37**, 223–248 (1970).
- [5] G. Wasserman: Acta Math., 135, 58-128 (1975).