114. Some Dirichlet Series with Coefficients Related to Periods of Automorphic Eigenforms*)

By Dennis A. Hejhal
Department of Mathematics, University of Minnesota (Communicated by Shokichi Iyanaga, m. J. a., Nov. 12, 1982)

§ 1. In this note we construct some Dirichlet series which generalize those found in [9, p. 311] and [11, p. 42]. Our basic procedure is to extend the ideas in [9]. Applications will be discussed in a later note.
§2. Let m be any nonnegative integer divisible by 4 . Take $R=m / 2$. Let q and r be relatively prime, squarefree positive integers. Suppose that:
(2.1) $\quad y_{0}^{2}-r y_{1}^{2}-q y_{2}^{2}+q r y_{3}^{2} \neq 0 \quad$ for $\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \in Z^{4}-\{0\}$.

Cf. [4, pp. 115-116]. Define:

$$
\left.\begin{array}{l}
S=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -q & 0 \\
0 & 0 & -r
\end{array}\right) \quad S_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & q & 0 \\
0 & 0 & r
\end{array}\right) \quad S[X]=X^{t} S X \\
n(x)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad a(w)=\left(\begin{array}{lll}
w & 0 & \\
0 & w^{-1}
\end{array}\right) \quad k(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
\mathscr{M}_{z}=n(x) a(\sqrt{y}) \quad \text { for } z=x+i y, \quad x \in \boldsymbol{R}, \quad y>0
\end{array}\right] \begin{array}{lll}
\frac{a^{2}+b^{2}+c^{2}+d^{2}}{2} & \sqrt{q}(a b+c d) & \sqrt{r}\left(\frac{a^{2}-b^{2}+c^{2}-d^{2}}{2}\right) \\
\mathscr{W}\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right]=\left(\begin{array}{lll}
\frac{a c+b d}{\sqrt{q}} & a d+b c & \sqrt{r}\left(\frac{a c-b d}{\sqrt{q}}\right) \\
\frac{a^{2}+b^{2}-c^{2}-d^{2}}{2 \sqrt{r}} & \sqrt{q}\left(\frac{a b-c d}{\sqrt{r}}\right) & \frac{a^{2}-b^{2}-c^{2}+d^{2}}{2}
\end{array}\right.
\end{array}
$$

$\mathcal{V}\left[\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right]=$ the analogous matrix for S^{-1}

$$
\begin{aligned}
& X_{*}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad X_{* *}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad E=k\left(\frac{\pi}{2}\right) \quad \mathscr{D}=\mathscr{W}(E)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& j_{Q}(z ; m)=\frac{(c z+d)^{m}}{|c z+d|^{m}} \quad \text { for } Q=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, R) \quad \text { cf. [5, p. 357]. }
\end{aligned}
$$

It is easily seen that \mathscr{W} and \mathbb{V} are homomorphisms from $S L(2, R)$

[^0]into $S L(3, R)$. In addition [for $Q \in S L(2, R)$]:
(2.2) $\quad \mathscr{W}(Q)^{t} S \mathscr{W}(Q)=S$;
\[

$$
\begin{align*}
& \left\{\begin{array}{ll}
\mathscr{W}(Q) X_{*}=X_{*} & \text { iff } Q=k(\theta) \\
\mathscr{W}(Q) X_{* *}=X_{* *} & \text { iff } Q=a(w)
\end{array}\right\} ; \tag{2.3}\\
& \mathcal{V}(Q)=\mathscr{D} \mathscr{W}\left(Q^{-1}\right)^{t} \mathscr{D} ; \tag{2.4}\\
& \mathcal{M}_{Q z}=Q \mathscr{M}_{z} k(\alpha) \quad \text { where } e^{i \alpha}=\frac{|c z+d|}{c z+d} . \tag{2.5}
\end{align*}
$$
\]

Let $\mathcal{G}_{q r}$ be the group $\{T \in \operatorname{PSL}(2, R): \mathscr{W}(T) \in S L(3, Z)\}$. Cf. [3, p. 501 ff$]$. Because of (2.1), we know that $\mathcal{G}_{q r}$ is a Fuchsian group with compact quotient space. Cf. [1], [3, pp. 507, 518], and [4, p. 117].

Let \mathcal{S} be Schwartz space on \boldsymbol{R}^{3}. Cf. [14, p. 146]. Consider functions in \mathcal{S} which satisfy $f\left[\mathscr{W}\left(k_{\theta}\right) X\right] \equiv e^{i m \theta} f(X)$ and $h\left[\mathscr{V}\left(k_{\theta}\right) X\right]$ $\equiv e^{i m \theta} h(X)$. Set:

$$
K_{f}(z)=\sum_{n \in \boldsymbol{Z}^{3}} f\left[\mathscr{W}\left(\mathscr{M}_{z}^{-1}\right) n\right] \quad \text { and } \quad \mathcal{K}_{n}(z)=\sum_{n \in \boldsymbol{Z}^{3}} h\left[\mathcal{V}\left(\mathscr{M}_{z}^{-1}\right) n\right] .
$$

By applying (2.5), we quickly establish that

$$
K_{f}\left(T_{z}\right)=K_{f}(z) j_{T}(z ; m) \quad \text { and } \quad \mathcal{K}_{h}\left(T_{z}\right)=\mathcal{K}_{h}(z) j_{T}(z ; m) \quad \text { for } T \in \mathcal{G}_{q r} .
$$

The Poisson summation formula shows that

$$
\begin{equation*}
K_{f}(z) \equiv \mathcal{K}_{f}(z), \tag{2.7}
\end{equation*}
$$

where \tilde{f} means the Fourier transform of f.
§3. Let Γ be any subgroup of $\mathcal{G}_{q r}$ having finite index. Cf. [3, p. 539] with $p=1$. The equation $n_{1}=\mathscr{W}(T) n_{2}(T \in \Gamma)$ induces an obvious equivalence relation on Z^{3}. Let $\left\{n_{0}\right\}$ be the corresponding set of equivalence classes. Write $\Gamma_{n_{0}}=\left\{T \in \Gamma: \mathscr{W}(T) n_{0}=n_{0}\right\}$.

Introduce $L_{2}(\Gamma \backslash H, m)$ and $C^{k}(\Gamma \backslash H, m)$ as in [5, pp. 358-9] and let $\phi \in C^{2}(\Gamma \backslash H, m)$ be any [fixed] eigenform. Take:

$$
\left\{\begin{array}{r}
\Delta_{m} \phi+s(1-s) \phi=0 \quad \text { with } \quad s \in\left[1-b_{m}, b_{m}\right] \cup[1 / 2+i \boldsymbol{R}] \tag{3.1}\\
\ldots \ldots \ldots \ldots \ldots \\
\Delta_{m} u=y^{2}\left(u_{x x}+u_{y y}\right)-i m y u_{x} \quad \text { and } \quad b_{m}=\max (1, R)
\end{array}\right\} .
$$

Cf. [5, p. 373] and [6, p. 370]. A formal manipulation shows that

$$
\begin{equation*}
\int_{\mathscr{F}} \phi(z) \overline{K_{f}(z)} d \mu(z)=\sum_{\left\{n_{0}\right\}} \int_{F R\left(\Gamma_{n_{0}}\right)} \phi(z) \overline{f\left[\mathscr{W}\left(\mathscr{M}_{z}^{-1}\right) n_{0}\right]} d \mu(z) \tag{3.2}
\end{equation*}
$$

where $F R\left(\Gamma_{n_{0}}\right)$ denotes a fundamental region for $\Gamma_{n_{0}}$. A similar computation is possible with $\phi(z) \overline{\mathcal{K}_{h}(z)}$.

We propose to consider

$$
\begin{aligned}
f(X) & =\left(\sqrt{q} x_{2}-i \sqrt{r} x_{3}\right)^{R} e^{\pi i X^{t}\left[u S+i v S_{1}\right] X} \\
h(x) & =\left(\frac{1}{\sqrt{q}} x_{2}-\frac{i}{\sqrt{r}} x_{3}\right)^{R} e^{\pi i X t\left[u S^{\left.-1+i v S_{1}^{-1}\right] X} \quad \text { for } \tau=u+i v \in H .\right.}
\end{aligned}
$$

The corresponding functions $K_{f}(z)$ and $\mathcal{K}_{h}(z)$ will be denoted by $\theta_{m}(z ; \tau ; S)$ and $\theta_{m}\left(z ; \tau ; S^{-1}\right)$. Compare [9, p.287(1)] and [13, pp.86, 108]. Equation (2.7) shows that:

$$
\begin{equation*}
\theta_{m}(z ; \tau ; S) \equiv \frac{(-1)^{m / 4}}{\sqrt{q r}}[-i E(\tau)]^{1 / 2}[i \overline{E(\tau)}]^{R+1} \theta_{m}\left(z ; E \tau ; S^{-1}\right) \tag{3.3}
\end{equation*}
$$

Let $t=S\left[n_{0}\right]$. When t is positive, we can write n_{0} in the form $A \mathscr{W}(Q) X_{*}$ with $Q \in S L(2, R)$ and $A \neq 0$. It follows that $\Gamma_{n_{0}}$ is a cyclic group of order $W\left[n_{0}\right]<\infty$.**)

Take $z_{0}=Q(i)$ and $w=\left(z-z_{0}\right) /\left(z-\bar{z}_{0}\right)$ as in [6, p. 342]. Thus:

$$
\begin{equation*}
\phi(z)=\left(\frac{1-w}{1-\bar{w}}\right)^{R} \sum_{n \in Z} c_{n} r^{|n|}\left(1-r^{2}\right)^{s} F\left(s+|n|+m H_{n}, s-m H_{n}\right. \tag{3.4}
\end{equation*}
$$

$$
\left.1+|n| ; r^{2}\right) e^{i n \theta}
$$

where $w=r e^{i \theta}$ and $H_{n}=(1 / 2) \operatorname{sgn}(n+1 / 2)$. We'll denote c_{-R} by the special symbol $E\left[n_{0}\right]$.

When $\mathrm{t}<0$, we write n_{0} in the form $\beta \mathscr{Q}(Q) X_{* *}$ with $\beta>0$. A trivial analysis of $\int_{\mathscr{F}} \theta_{0}(z ; i ; S) d \mu(z)$ shows that $\Gamma_{n 0} \neq I$. Cf. (3.2). It follows that $\Gamma_{n 0}=\left[Q \alpha(k) Q^{-1}\right]$ for a uniquely determined $k>1$.

Take $\psi(z)=\phi(Q z) j_{Q}(z ; m)^{-1}$ and define:

$$
\begin{equation*}
I(\theta)=\int_{1}^{k^{2}} \psi\left(r e^{i \theta}\right) \frac{d r}{r} \tag{3.5}
\end{equation*}
$$

We'll denote $I(\pi / 2)$ by the special symbol $I\left[n_{0}\right]$. Compare [7, p. 274].
The $C V$-analogs of these symbols will be denoted by $E\left[m_{0}\right]$ and $I\left[m_{0}\right]$.

Let $\Psi(a ; c ; z)$ be the usual confluent hypergeometric function [2, p. 255]. The following theorem is (now) obtained by careful computation.

Theorem 1. We have:

$$
\begin{aligned}
& \int_{\mathscr{F}} \phi(z) \theta_{m}(z ; \tau ; S) d \mu(z)=\delta_{m 0} \int_{\mathscr{P}} \phi(z) d \mu(z) \\
&+\sum_{\substack{\left[n_{0}\right] \\
S\left[n_{0}\right]>0}}(-1)^{m / 4} \pi \frac{E\left[n_{0}\right]}{W\left[n_{0}\right]} \Gamma(R+1) 2^{-R} t^{R / 2}(2 \pi v t)^{(s-R-1) / 2} \\
& \times \Psi\left[\frac{s+R+1}{2} ; s+\frac{1}{2} ; 2 \pi v t\right] e^{-\pi i z t} \\
&+\sum_{\substack{\left\{n_{0}\right] \\
S\left[n_{0} \ll 0\right.}} \sqrt{\pi} I\left[n_{0}\right]|t|^{R / 2}(2 \pi v|t|)^{(s-R-1) / 2} \\
& \times \Psi\left[\frac{s-R}{2} ; s+\frac{1}{2} ; 2 \pi v|t|\right] e^{\pi i \tau|t|}
\end{aligned}
$$

A similar expansion holds for $\int_{\mathscr{F}} \phi(z) \overline{\theta_{m}\left(z ; \tau ; S^{-1}\right)} d \mu(z)$.
§4. It is very tempting to combine Theorem 1 with equation (3.3). By analyzing the (special) case $m=0, \phi=1, \tau=i v$ we quickly establish that:

$$
\begin{equation*}
\left.\sum_{\substack{n, n] \\ 0<S\left[n_{0}\right] \leq x}} 1=O\left(x^{3 / 2}\right), \sum_{-x \leq S\left[n_{0}\right]} \ln \right]<0<0\left(x^{3 / 2}\right) . \tag{4.1}
\end{equation*}
$$

[^1]These (crude) estimates are very useful for convergence considerations.
Return to the case of arbitrary ϕ and take $u \approx 0$. By expanding everything in powers of u and comparing the terms of degree 0 and 1 , we arrive at two basic identities (which involve only v). We can now pass to the Mellin transforms as in [9, pp. 310-311]. After some careful manipulation of hypergeometric functions, we ultimately arrive at the following proposition.

Theorem 2. Let:

$$
\begin{aligned}
& F_{a}(\xi ; S)=\left(\frac{1}{\sqrt{8 \pi}}\right)^{R} \sum_{\substack{\left\{n_{0}\right]}>} \pi \frac{E\left[n_{0}\right]}{W\left[n_{0}\right]} \Gamma(R+1)(2 \pi t)^{-\xi} \\
& F_{b}(\xi ; S)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{R} \sum_{\substack{\left[n_{0}\right]}} \sqrt{ }\left[n_{0}\right]<0 \\
& \pi
\end{aligned}\left[n_{0}\right](2 \pi|t|)^{-\xi} .
$$

Define $F_{\mu}\left(\xi ; S^{-1}\right)$ similarly. Take $\omega=\delta_{m 0} \int_{\mathscr{F}} \phi(z) d \mu(z)$. Then:
(i) F_{a} and F_{b} are absolutely convergent for $\operatorname{Re}(\xi)>3 / 2$;
(ii) $\quad F_{a}(\xi ; S)=\left(2^{-3 / 2} \pi^{-1 / 2}[\operatorname{det}(S)]^{-1 / 2} /(\xi-3 / 2)\right) \omega+$ an entire function ;
(iii) $F_{b}(\xi ; S)=\left(2^{-3 / 2}[\operatorname{det}(S)]^{-1 / 2} /(\xi-3 / 2)\right) \omega+$ an entire function;
(iv) the same equations hold when S is replaced by S^{-1};
(v) we have

$$
\begin{aligned}
\binom{F_{a}(3 / 2-\xi ; S)}{\overline{F_{b}^{\prime}}(3 / 2-\xi ; S)} & =\frac{1}{\pi \sqrt{q r}} 2^{2 \xi-3 / 2} \Gamma\left(\xi-\frac{s}{2}\right) \Gamma\left(\xi+\frac{s-1}{2}\right) \\
& \cdot\left[\begin{array}{ll}
\cos \pi \xi & \frac{\pi}{\Gamma((s-R) / 2) \Gamma((1-s-R) / 2)} \\
\frac{\pi}{\Gamma((1+s+R) / 2) \Gamma((2-s+R) / 2)} & \sin \pi \xi
\end{array}\right] \\
& \cdot\binom{F_{a}\left(\xi ; S^{-1}\right)}{F_{b}\left(\xi ; S^{-1}\right)} .
\end{aligned}
$$

§.5. The following additional facts should also be noted.
In the first place $E\left[n_{0}\right] \equiv 0$ whenever $s>1$. To check this: we integrate $\phi(z)((1-\bar{w}) /(1-w))^{R}$ and remember that

$$
\phi=O(1), \quad r^{R}\left(1-r^{2}\right)^{s} F\left(s, s+R ; 1+R ; r^{2}\right) \sim(\text { constant })\left(1-r^{2}\right)^{1-s}
$$ for $r \rightarrow 1$.

Cf. (3.4) and [2, p. 107(33)].
When $s=R \geqq 2$, the function ϕ factors into $y^{R} F(z)$, where F is a classical holomorphic $R^{\text {th }}$ order differential on $\Gamma \backslash H$. Cf. [5, pp.407408]. In this case :

$$
I\left[n_{0}\right]=(-1)^{m / 4} \frac{1}{\left(k^{-1}-k\right)^{R-1}} \int_{z_{1}}^{P_{z_{1}}} F(z)\left[c z^{2}+(d-a) z-b\right]^{R-1} d z,
$$

where $P=Q a(k) Q^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and z_{1} is any point in H. Cf. [8, p. 359(73)]. Cf. also [10], [12].

References

[1] M. Eichler: Ü ber die Einheiten der Divisionsalgebren. Math. Ann., 114, 635-654 (1937).
[2] A. Erdélyi: Higher Transcendental Functions. vol. 1, McGraw-Hill (1953).
[3] R. Fricke and F. Klein: Vorlesungen über die Theorie der Automorphen Funktionen. vol. 1, B. G. Teubner (1897).
[4] I. M. Gelfand, M. I. Graev, and I. I. Pyatetskii-Shapiro: Representation Theory and Automorphic Functions. W. B. Saunders (1969).
[5] D. A. Hejhal: The Selberg Trace Formula for $\operatorname{PSL}(2, R)$. vol. 1, Springer Lecture Notes 548 (1976).
[6] -: The Selberg Trace Formula for $\operatorname{PSL}(2, R)$. vol. 2 (to appear in the Springer Lecture Note series (1982)).
[7] -: Sur certaines séries de Dirichlet associées aux géodésiques fermées d'une surface de Riemann compacte. C. R. Acad. Sci. Paris, 294, 273-276 (1982). Voir aussi 294, 509,637 (1982).
[8] -: Monodromy groups and Poincaré series. Bull. Amer. Math. Soc., 84, 339-376 (1978).
[9] H. Maass: Über die räumliche Verteilung der Punkte in Gittern mit indefiniter Metrik. Math. Ann., 138, 287-315 (1959).
[10] T. Oda: On modular forms associated with indefinite quadratic forms of signature (2, n-2). Math. Ann., 231, 97-144 (1977).
[11] T. Shintani: On zeta functions associated with the vector space of quadratic forms. J. Fac. Sci. Univ. Tokyo, 22, 25-65 (1975).
[12] -: On the construction of holomorphic cusp forms of half-integral weight. Nagoya Math. J., 58, 83-126 (1975).
[13] C. L. Siegel: Gesammelte Abhandlungen. vol. 3, Springer-Verlag (1966).
[14] K. Yosida: Functional Analysis. $2^{\text {nd }}$ ed., Springer-Verlag (1968).

[^0]: *) Supported in part by NSF Grant MCS 78-27377.

[^1]: **) The generator is $Q k(\pi / W) Q^{-1}$ where $W \equiv W\left[n_{0}\right]$.

